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Summary

§ Rank aggregation and rank join

§ Uncertain scoring

§ Representative orderings

§ Sensitivity analysis
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Rank aggregation

§ Aim: combining several ranked lists of objects in a 
robust way into a single consensus ranking
§ Objects are equipped with a score
§ An aggregation function computes the overall score

– Typically monotone (e.g., weighted sum)

§ Main interest in the top k elements of the aggregation
• Need for algorithms that quickly obtain the top results
• … without having to read each ranking in its entirety

§ Data access is sorted (from top scores downwards)
• Some works also allow random access: given an object, 

retrieve its score
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Rank join

§ Extends rank aggregation to different data sets

• A natural join R1    R2 …    Rn

• A scoring function 

• A positive integer k < |R1    R2 …     Rn|

§ Compute
• k join results with highest scores

[Ilyas et al., VLDB2004]
[Schnaitter and Polyzotis, PODS2008]
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Rank-aware plans 5

Fetch 5 results

HR

Sort on S

conventional plan rank-aware plan

Fetch 5 results

Ordered by 
score

Rank Join Algorithm

Join Algorithm

M HR M
[Adapted from Polyzotis, 2010]

SELECT r.id, m.id, h.id, 

FROM RestaurantsNY r, MovieTheathersNY m, HotelsNY h,, 

WHERE r.neighborhood = h.neighborhood = m.neighborhood

RANK BY 0.5*r.price + 0.3*m.rating + 0.2*h.stars

LIMIT 5
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Inspiring work

§ Soliman and Ilyas, “Ranking with uncertain 
scores”, ICDE 2009

• Objects have scores defined over intervals
– E.g., apartment rent [$200-$250]

§ Vlachou et al. “Reverse Top-k queries”, ICDE 
2010

• Given a set of (linear) scoring functions, 
determine the one that gives the highest rank 
for a target object
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Uncertain scoring

§ Users are often unable to precisely specify 
the scoring function

§ Using trial-and-error or machine learning 
may be tedious and time consuming

§ Even when the function is known, it is 
crucial to analyze the sensitivity of the 
computed ordering wrt. changes in the 
function
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Uncertain scoring

§ Assumptions:

• Linear scoring function
– S = w1s1 + w2s2 + … + wnsn

• User-defined weights w1, w2,…,wn  are 
– Uncertain, and, w.l.o.g.,
– normalized to sum up to 1
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Representing scoring functions on the simplex 9

§ Each point on the simplex represents a possible 
scoring function

§ We assume that p(w) is uniform over the simplex
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Uncertain scoring

§ Uncertainty induces a probability 
distribution on a set of possible orderings 

§ Each ordering occurs with a probability

(weights in the simplex inducing that 
ordering)

§ When N is large, we usually focus on a 
prefix of length K<N of an ordering
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§ Top-k query:

• Results and possible orderings:

Ranking with uncertain scoring
Example 11
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Objectives of our study (1/2)

§ Finding a representative ordering:
• Most Probable Ordering: 

• Optimal Rank Aggregation:
– Ordering with the minimum average distance to 

all other orderings
• Common distances between orderings:

– Kendall tau: number of pairwise disagreements in the 
relative order of items

– Spearman’s footrule: sum of distances between the ranks 
of the same item in the two orderings
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Example of MPO and ORA

§ For K=2, the MPO is <τ2, τ3>

§ ORA is λ3 both for Kendall tau and footrule 
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Objectives of our study (2/2)

§ Quantifying sensitivity
• Stability of a chosen ordering wrt. 

perturbations in the weights
– largest volume in the weights space, around an 

input weight vector w, in which changing the 
weights leaves the computed ordering unaltered

• Likelihood of a chosen ordering
– probability of obtaining an ordering identical to a 

given one up to depth K
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Example of Stability

§ For w=(0.2,0.8) we have λ2

§ For K=2, the vector (.167,.833) is the 
furthest that still induces λ2

§ The measure of stability is the distance
   ||(0.2,0.8) - (.167,.833) ||=0.047
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Example of Likelihood

§ For w=(0.5,0.5) we have λ3

§ For K=2, likelihood is
    p(λ3) + p(λ4)

 (λ3 and λ4 identical up to depth 2)
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Computing representative orderings

§ A naïve approach:
1. Enumerate possible weight vectors
2. Find the distinct orderings induced by these 

vectors
3. Pick the required representative ordering

§ This is:
• Highly inefficient
• Inaccurate, since it requires discretizing the 

weights space
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Efficient approaches

§ MPO requires processing prefixes

§ ORA requires processing full orderings

§ A holistic approach: succinct representation of 
full orderings as disjoint partitions of the 
space of weights
• Appropriate for ORA

§ An incremental approach: tree-based 
representation that is incrementally 
constructed by extending prefixes of orderings
• Appropriate for MPO
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Holistic approach

§ For each pair of join results Ti and Tj 
• Divide the space of weights into two partitions based on 

their aggregate score
– In one F(Ti)>F(Tj), in the other F(Ti)<F(Tj)  

• The space is thus partitioned into O(N2^(d-1)) disjoint 
convex polyhedra, each corresponding to an ordering

19



Search Computing

Ranking with uncertain scoring
Finding ORA using the holistic approach

§ ORA under Kendall tau for d=2
• Simply given by sorting join results using the sum of the 

score components as the sort comparator
• Uses weak stochastic transitivity:

   if p(F(Ti)>F(Tj))>.5 and p(F(Tj)>F(Tk))>.5
   then p(F(Ti)>F(Tk))>.5

• Besides, p(F(Ti)>F(Tj))>.5 iff si,1 + si,2 > sj,1 + sj,2

• Complexity: O(N log N)
• NP-hard for d>2 (weak stochastic transitivity fails)

§ ORA under footrule
• O(N2.5) for d=2

– Min. cost perfect matching of a weighted bipartite graph
• O(N2^(d-1)) for d>2

§ NB: ORA-footrule is a 2-approximation of ORA-Kendall
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Incremental approach 21

§ Based on an incremental construction of a tree 
representing the possible orderings

§ Each path from the root to a node at depth K 
represents a possible prefix of length K

§ Probability values are assigned to each node

§ (probability of the corresponding prefix)
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Points corresponding to join results for d=2 22
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Tree construction 23
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Observations

§ Tree generation analyzes only the convex hull of 
the N points

• #points on the convex hull O( (log N)d-1 )

§ At each level,  the regions in the weight space 
corresponding to a node are polyhedra
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Generalization to d>2 25
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Tree size

§ Tree size does not grow exponentially
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Node probabilities and MPO

§ Computing node probabilities amounts to 
computing volumes of convex polyhedra
• Shoelace formula…

§ This is NP-hard, and thus too expensive, in higher 
dimensions

§ A Monte-Carlo sampling approach is therefore 
adopted for d>2 (approximate solutions)

§ Optimization when searching for MPO:
• prune branches rooted at a node with probability less 

than the current MPO candidate
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Stability for d=2 28
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Stability for d=3 29
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Summary of problems and complexities 30
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Not discussed in this talk

§ Pruning dominated join results

§ Preferences among weights

§ Experiments
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