

Ranking with uncertain scoring functions Davide Martinenghi

Joint work with I. Ilyas, M. Soliman, and M. Tagliasacchi

Oxford, May 17, 2011

Ranking with uncertain scoring

Summary

- Rank aggregation and rank join
- Uncertain scoring
- Representative orderings
- Sensitivity analysis

Rank aggregation

- Aim: combining several ranked lists of objects in a robust way into a single consensus ranking
 - Objects are equipped with a score
 - An aggregation function computes the overall score
 - Typically monotone (e.g., weighted sum)
- Main interest in the top k elements of the aggregation
 - Need for algorithms that quickly obtain the top results
 - ... without having to read each ranking in its entirety
- Data access is sorted (from top scores downwards)
 - Some works also allow random access: given an object, retrieve its score

Rank join

- Extends rank aggregation to different data sets
 - A natural join $R_1 \bowtie R_2 \bowtie R_n$
 - A scoring function $S(\tau) = f(S(\tau_1), \dots, S(\tau_n))$

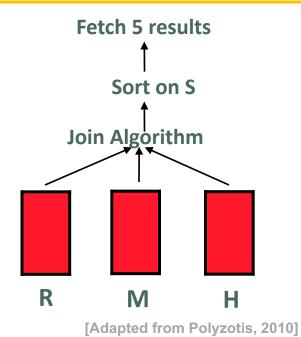
- A positive integer $k < |R_1 \bowtie R_2 ... \bowtie R_n|$
- Compute
 - k join results with highest scores

[Ilyas et al., VLDB2004] [Schnaitter and Polyzotis, PODS2008]

Rank-aware plans

```
SELECT r.id, m.id, h.id,
FROM RestaurantsNY r, MovieTheathersNY m, HotelsNY h,,
WHERE r.neighborhood = h.neighborhood = m.neighborhood
RANK BY 0.5*r.price + 0.3*m.rating + 0.2*h.stars
LIMIT 5
```

conventional plan



Ordered by score

M

rank-aware plan

Fetch 5 results

Rank Join Algorithm

R

Inspiring work

- Soliman and Ilyas, "Ranking with uncertain scores", ICDE 2009
 - Objects have scores defined over intervals
 - E.g., apartment rent [\$200-\$250]
- Vlachou et al. "Reverse Top-k queries", ICDE 2010
 - Given a set of (linear) scoring functions, determine the one that gives the highest rank for a target object

Uncertain scoring

- Users are often unable to precisely specify the scoring function
- Using trial-and-error or machine learning may be tedious and time consuming
- Even when the function is known, it is crucial to analyze the sensitivity of the computed ordering wrt. changes in the function

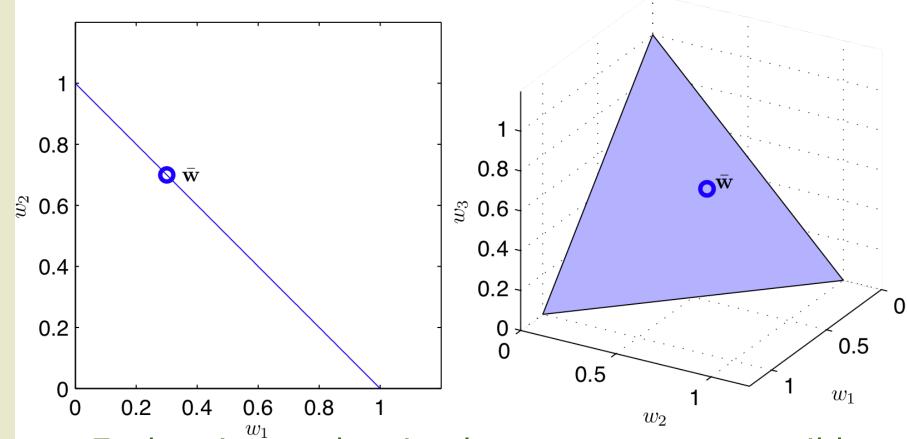
Uncertain scoring

- Assumptions:
 - Linear scoring function

$$- S = W_1S_1 + W_2S_2 + ... + W_nS_n$$

- User-defined weights w₁, w₂,...,w_n are
 - Uncertain, and, w.l.o.g.,
 - normalized to sum up to 1

Representing scoring functions on the simplex



- Each point on the simplex represents a possible scoring function
- We assume that $p(\mathbf{w})$ is uniform over the simplex

Uncertain scoring

- Uncertainty induces a probability distribution on a set of possible orderings
- Each ordering occurs with a probability

$$p(\boldsymbol{\lambda}_N) = \int_{\mathbf{w} \in \Delta^{d-1}, \mathcal{O}} \underset{\boldsymbol{\lambda}_N}{\overset{\mathbf{w}}{\sim}} p(\mathbf{w}) d\mathbf{w}$$

(weights in the simplex inducing that ordering)

 When N is large, we usually focus on a prefix of length K<N of an ordering

Example

Top-k query:

SELECT R.RestName, R.Street, H.HotelName FROM RestaurantsInParis R, HotelsInParis H **WHERE** distance(R.coordinates, H.coordinates) $\leq 500m$ **RANK BY** $w_R \cdot R.Rating + w_H \cdot H.Stars$ LIMIT 5

Results and possible orderings:

ID	4.		Ranl	k By	w_R .rating	$3+w_H.si$	tars
ID	rating	stars	$W_{D}+$	$w_H = 1$			
τ_1	2	6		11		3.4	3.5
τ,	7	5	λ^1	λ^2	λ^3	$\frac{\lambda^4}{}$	$\underline{\lambda^5}$
_	Λ	7	τ ₃	τ_3	τ_2	τ_2	τ_2
τ_3	4	/	$\tau_{\scriptscriptstyle 1}$	τ_2	τ_{3}	τ_{3}	$ au_{A}$
τ_4	5	2	$\boldsymbol{\tau}_2$	τ ₁	τ ₁	$\tau_{\scriptscriptstyle \Delta}$	$ au_3$
Join Results		τ_4	τ_4	$ au_4$	$ au_1^{\cdot}$	$\boldsymbol{\tau}_1$	
		(0 0.16	57	0.4 0.5	71	0.833 1.0

Objectives of our study (1/2)

- Finding a representative ordering:
 - Most Probable Ordering:

$$\boldsymbol{\lambda}_{MPO}^* = arg. \max_{\boldsymbol{\lambda} \in \Lambda_K} p(\boldsymbol{\lambda})$$

- Optimal Rank Aggregation:
 - Ordering with the minimum average distance to all other orderings
- Common distances between orderings:
 - Kendall tau: number of pairwise disagreements in the relative order of items
 - Spearman's footrule: sum of distances between the ranks of the same item in the two orderings

Example of MPO and ORA

- For K=2, the MPO is $\langle T_2, T_3 \rangle$
- ORA is λ^3 both for Kendall tau and footrule

ID	nating	gtorg	Rank	x By v	v_R .rating	$g+w_H.stan$	$r_{\mathcal{S}}$
ID	rating	Stars	w_R +1	$w_H = 1$			
τ_1	2	6			3.2	3.4	3.5
τ,	7	5	$\underline{\lambda^1}$	$\frac{\lambda^2}{}$	$\overline{\lambda^3}$	λ^4	$\underline{\lambda^5}$
τ	4	7	τ ₃	τ ₃	τ ₂	τ ₂	τ ₂
τ ₄	5	2	$oldsymbol{ au}_1 \ oldsymbol{ au}_2$	τ ₂ τ ₁	τ ₃ τ ₁	τ ₃ τ ₄	τ ₄ τ ₃
-	Join Results			$ au_4$	$oldsymbol{ au}_4$	$oldsymbol{ au}_1$	$ au_1$
		(0.16	57 O	.4 0.5	71 0.	833 1.0

Objectives of our study (2/2)

- Quantifying sensitivity
 - Stability of a chosen ordering wrt. perturbations in the weights
 - largest volume in the weights space, around an input weight vector w, in which changing the weights leaves the computed ordering unaltered

- Likelihood of a chosen ordering
 - probability of obtaining an ordering identical to a given one up to depth K

Example of Stability

- For $\mathbf{w} = (0.2, 0.8)$ we have λ^2
- For K=2, the vector (.167,.833) is the furthest that still induces λ^2
- The measure of stability is the distance ||(0.2,0.8) - (.167,.833)|| = 0.047

ID	noting.	atona	Rank By w_R .rating+ w_H .stars					
ID	rating	stars	w_R +1	$w_{II} = I$	1			
τ_1	2	6				3.4	3.5	
τ,	7	5	$\underline{\lambda^1}$	λ^2	λ^3	$\underline{\lambda^4}$	$\underline{\lambda^5}$	
τ	4	7	τ ₃	τ ₃	τ_2	τ ₂	τ_2	
-3			$oldsymbol{ au}_1$	τ_2	$ au_3$	τ_3	$ au_4$	
τ_4	5	2	τ_2	$\boldsymbol{\tau}_1$	${f \tau}_1$	$ au_4$	τ_3	
Join Results			$ au_4$	τ_4^-	$ au_4^-$	$ au_1$	τ_1	
		(0.16	7	0.4 0.57	'1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Example of Likelihood

- For $\mathbf{w} = (0.5, 0.5)$ we have λ^3
- For K=2, likelihood is

$$p(\lambda^3) + p(\lambda^4)$$

 $(\lambda^3 \text{ and } \lambda^4 \text{ identical up to depth 2})$

ID	noting	atoma	Ranl	k By	w _R .rating-	$+w_H.s$	tars
ID	rating	stars	$W_{B}+$	$w_H = I$	1		
τ_1	2	6		-	_	3.4	3.5
τ,	7	5	$\frac{\lambda^1}{}$	$\frac{\lambda^2}{}$	λ^3	λ^4	λ^5
_	Λ	7	τ_3	τ_3	τ_2	τ_2	τ_2
τ_3	4	/	T ₁	τ_2	τ_{3}	τ_{3}	$ au_{arDelta}$
τ_4	5	2	τ_2	τ ₁	τ_1	$\boldsymbol{\tau}_{\scriptscriptstyle{\!arDella}}$	τ_3
Join Results		τ_4	τ_4	τ_4	$ au_1$	$ au_1$	
		(0.16	67	0.4 0.57	1	0.833 1.0

Computing representative orderings

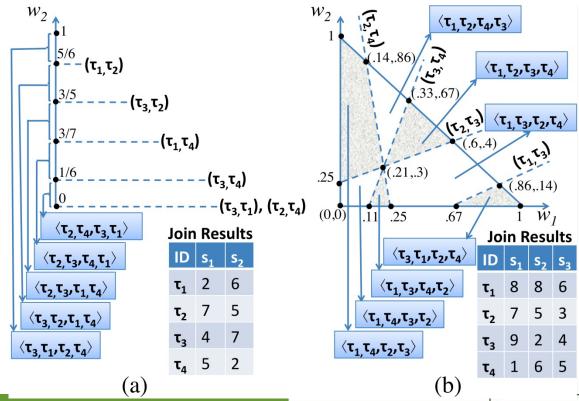
- A naïve approach:
 - 1. Enumerate possible weight vectors
 - 2. Find the distinct orderings induced by these vectors
 - 3. Pick the required representative ordering
- This is:
 - Highly inefficient
 - Inaccurate, since it requires discretizing the weights space

Efficient approaches

- MPO requires processing prefixes
- ORA requires processing full orderings
- A holistic approach: succinct representation of full orderings as disjoint partitions of the space of weights
 - Appropriate for ORA
- An incremental approach: tree-based representation that is incrementally constructed by extending prefixes of orderings
 - Appropriate for MPO

Holistic approach

- For each pair of join results Ti and Tj
 - Divide the space of weights into two partitions based on their aggregate score
 - In one F(Ti) > F(Tj), in the other F(Ti) < F(Tj)
 - The space is thus partitioned into $O(N^{2^{(d-1)}})$ disjoint convex polyhedra, each corresponding to an ordering



Finding ORA using the holistic approach

- ORA under Kendall tau for d=2
 - Simply given by sorting join results using the sum of the score components as the sort comparator
 - Uses weak stochastic transitivity:

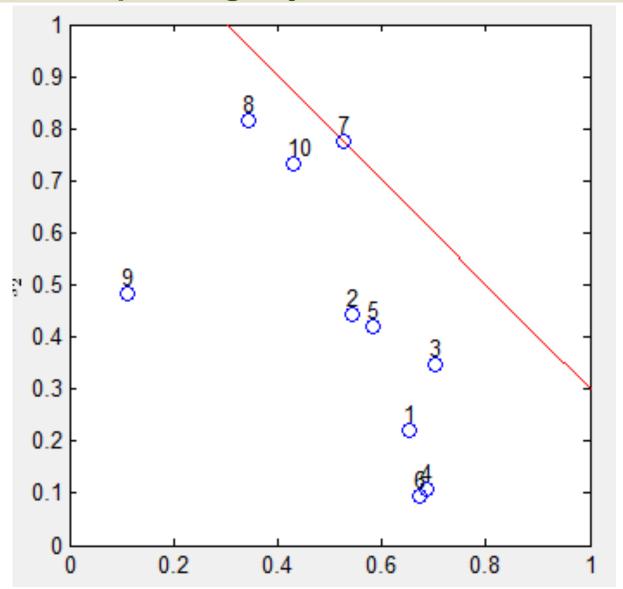
if
$$p(F(T_i)>F(T_j))>.5$$
 and $p(F(T_j)>F(T_k))>.5$
then $p(F(T_i)>F(T_k))>.5$

- Besides, $p(F(T_i)>F(T_i))>.5$ iff $s_{i,1} + s_{i,2} > s_{i,1} + s_{i,2}$
- Complexity: O(N log N)
- NP-hard for d>2 (weak stochastic transitivity fails)
- ORA under footrule
 - $O(N^{2.5})$ for d=2
 - Min. cost perfect matching of a weighted bipartite graph
 - $O(N^{2^{(d-1)}})$ for d>2
- NB: ORA-footrule is a 2-approximation of ORA-Kendall

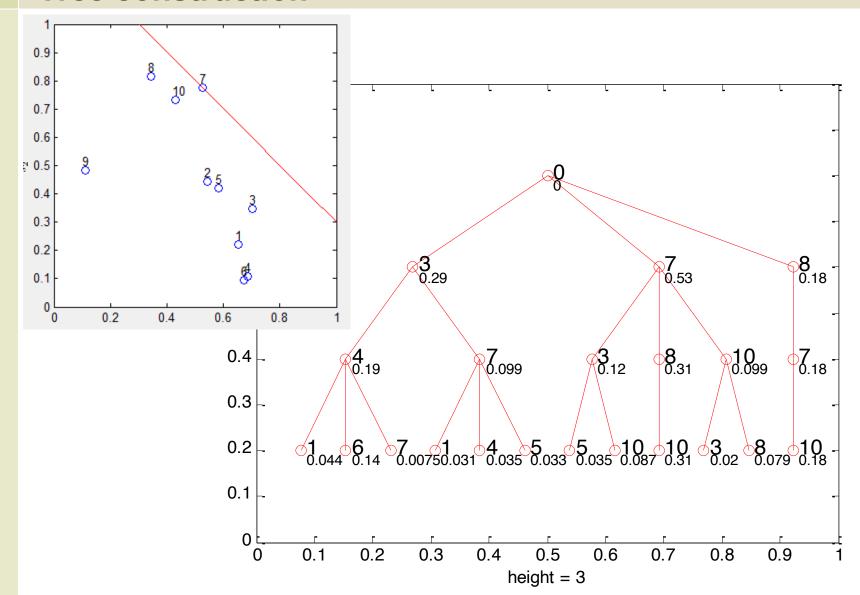
Incremental approach

- Based on an incremental construction of a tree representing the possible orderings
- Each path from the root to a node at depth K represents a possible prefix of length K
- Probability values are assigned to each node
 - (probability of the corresponding prefix)

Points corresponding to join results for d=2

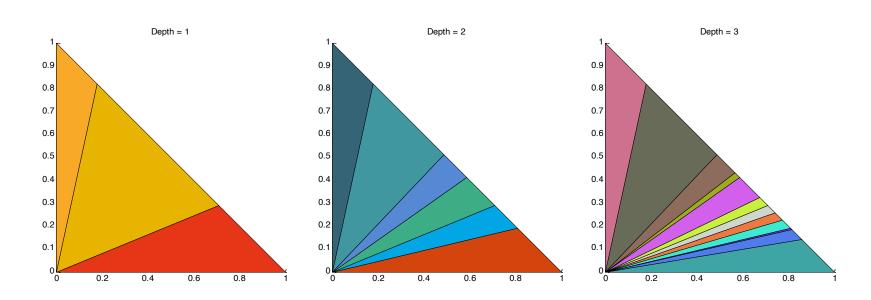


Tree construction

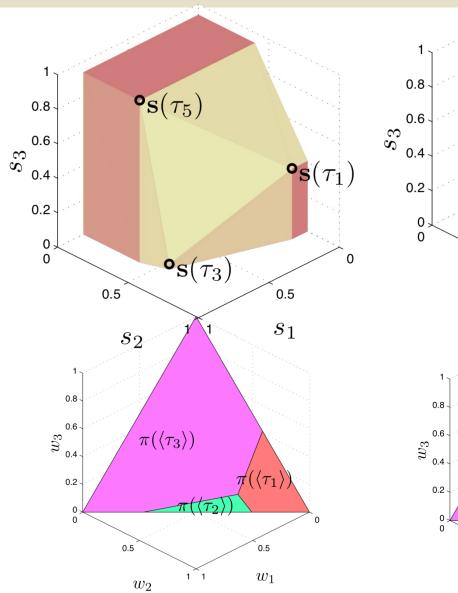


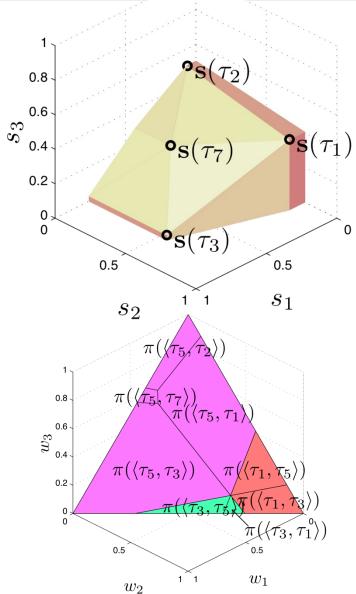
Observations

- Tree generation analyzes only the convex hull of the N points
 - #points on the convex hull O((log N)^{d-1})
- At each level, the regions in the weight space corresponding to a node are polyhedra

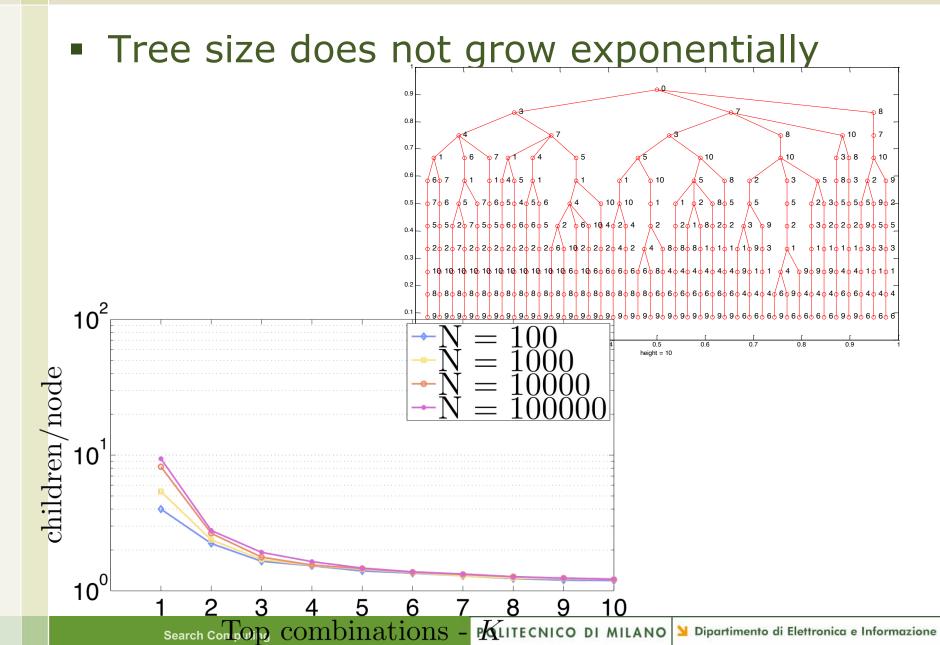


Generalization to d>2





Tree size

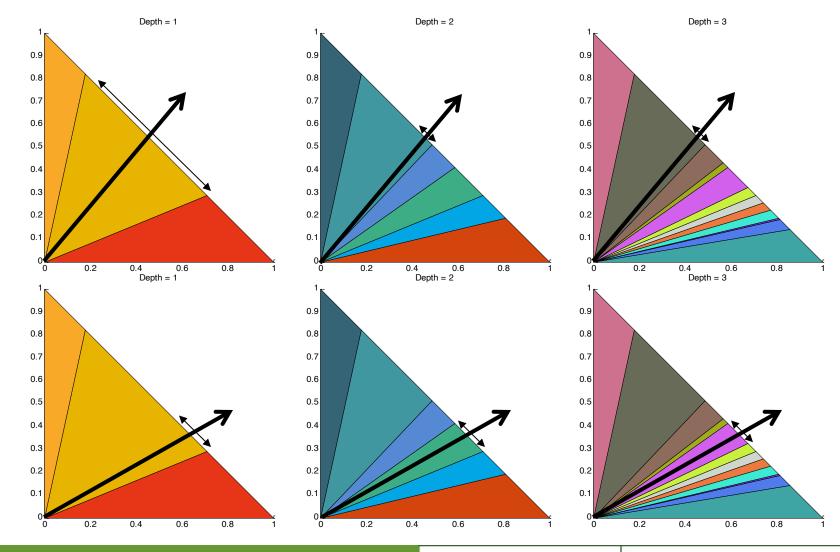


Node probabilities and MPO

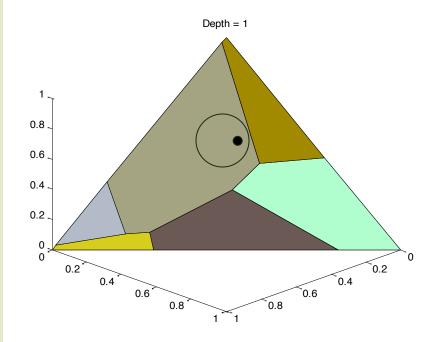
- Computing node probabilities amounts to computing volumes of convex polyhedra
 - Shoelace formula...
- This is NP-hard, and thus too expensive, in higher dimensions
- A Monte-Carlo sampling approach is therefore adopted for d>2 (approximate solutions)

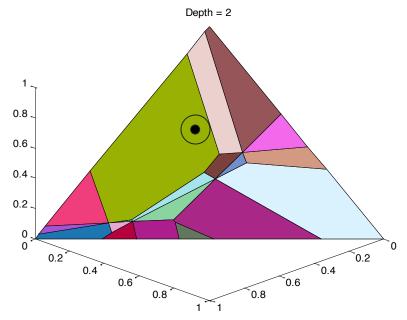
- Optimization when searching for MPO:
 - prune branches rooted at a node with probability less than the current MPO candidate

Stability for d=2



Stability for d=3





Summary of problems and complexities

Problem	d=2	d=3	d > 3
MPO (average case)	$O(N(logN)^{K+1})$	$O(N(logN)^{2K+1})$	$O(N^{\lfloor d/2 \rfloor + 1} (logN)^{(d-1)K})^{-\lceil \S \rceil}$
MPO (worst case)	$O(N^2 log N)$	$O(N^4)$	$O(N^{2^{d-1}})^{-[\S]}$
ORA (Kendall tau)	O(NlogN)	NP-Hard	NP-Hard
ORA (Footrule)	$O(N^{2.5})$	$O(N^4)$	$O(N^{2^{d-1}})^{-[\S]}$
STB	O(N)	O(N)	O(dN)
LIK	O(N)	$O(N^2)$	$O(N^{2^{d-2}})$ [§]

^[§] Approximate solution.

Not discussed in this talk

- Pruning dominated join results
- Preferences among weights
- **Experiments**

Main References

Historical papers

- Jean-Charles de Borda Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, Paris 1781
- Nicolas de Condorcet Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, 1785
- Kenneth J. Arrow A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328-346, 1950

Rank aggregation and ranking queries

- Ronald Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312
- Ronald Fagin Combining Fuzzy Information from Multiple Systems. PODS 1996: 216-226
- Ronald Fagin Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10
- Ronald Fagin, Amnon Lotem, Moni Naor Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines and k-Skybands

- Stephan Börzsönyi, Donald Kossmann, Konrad Stocker The Skyline Operator. ICDE 2001: 421-430
- Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang Skyline with Presorting. ICDE 2003: 717-719
- Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Main References

Extensions of skylines: flexible skylines

- Paolo Ciaccia, Davide Martinenghi Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)
- Paolo Ciaccia, Davide Martinenghi FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

Extensions of ranking queries: uncertainty, proximity, diversity

- Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011: 805-816
- Davide Martinenghi, Marco Tagliasacchi Proximity Rank Join. PVLDB 3(1): 352-363 (2010)
- Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi Top-k bounded diversification. SIGMOD Conference 2012: 421-432
- Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Nørvåg Reverse top-k queries. ICDE 2010: 365-376
- Davide Martinenghi, Marco Tagliasacchi: Cost-Aware Rank Join with Random and Sorted Access. IEEE Trans. Knowl. Data Eng. 24(12): 2143-2155 (2012)
- Davide Martinenghi, Marco Tagliasacchi: Proximity measures for rank join. ACM Trans. Database Syst. 37(1): 2:1-2:46 (2012)
- Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Efficient Diversification of Top-k Queries over Bounded Regions. SEBD 2012: 139-146
- Ilio Catallo, Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Top-k diversity gueries over bounded regions. ACM Trans. Database Syst. 38(2): 10 (2013)

Main References

Web Access

- Daniele Braga, Stefano Ceri, Florian Daniel, Davide Martinenghi: Optimization of multi-domain queries on the web. Proc. VLDB Endow. 1(1): 562-573 (2008)
- Andrea Calì, Davide Martinenghi: Conjunctive Query Containment under Access Limitations. ER 2008: 326-340
- Andrea Calì, Davide Martinenghi: Querying Data under Access Limitations. ICDE 2008: 50-59
- Andrea Calì, Diego Calvanese, Davide Martinenghi: Dynamic Query Optimization under Access Limitations and Dependencies. J. Univers. Comput. Sci. 15(1): 33-62 (2009)
- Andrea Calì, Davide Martinenghi: Optimizing Query Processing for the Hidden Web. APWeb 2010: 397
- Andrea Calì, Davide Martinenghi: Querying the deep web. EDBT 2010: 724-727