
Ranking with uncertain scoring functions
Davide Martinenghi

Joint work with I. Ilyas, M. Soliman, and M. Tagliasacchi

Oxford, May 17, 2011

Search Computing

Ranking with uncertain scoring
Summary

§ Rank aggregation and rank join

§ Uncertain scoring

§ Representative orderings

§ Sensitivity analysis

2

Search Computing

Ranking with uncertain scoring
Rank aggregation

§ Aim: combining several ranked lists of objects in a
robust way into a single consensus ranking
§ Objects are equipped with a score
§ An aggregation function computes the overall score

– Typically monotone (e.g., weighted sum)

§ Main interest in the top k elements of the aggregation
• Need for algorithms that quickly obtain the top results
• … without having to read each ranking in its entirety

§ Data access is sorted (from top scores downwards)
• Some works also allow random access: given an object,

retrieve its score

3

Search Computing

Ranking with uncertain scoring
Rank join

§ Extends rank aggregation to different data sets

• A natural join R1 R2 … Rn

• A scoring function

• A positive integer k < |R1 R2 … Rn|

§ Compute
• k join results with highest scores

[Ilyas et al., VLDB2004]
[Schnaitter and Polyzotis, PODS2008]

4

Search Computing

Ranking with uncertain scoring
Rank-aware plans 5

Fetch 5 results

HR

Sort on S

conventional plan rank-aware plan

Fetch 5 results

Ordered by
score

Rank Join Algorithm

Join Algorithm

M HR M
[Adapted from Polyzotis, 2010]

SELECT r.id, m.id, h.id,

FROM RestaurantsNY r, MovieTheathersNY m, HotelsNY h,,

WHERE r.neighborhood = h.neighborhood = m.neighborhood

RANK BY 0.5*r.price + 0.3*m.rating + 0.2*h.stars

LIMIT 5

Search Computing

Ranking with uncertain scoring
Inspiring work

§ Soliman and Ilyas, “Ranking with uncertain
scores”, ICDE 2009

• Objects have scores defined over intervals
– E.g., apartment rent [$200-$250]

§ Vlachou et al. “Reverse Top-k queries”, ICDE
2010

• Given a set of (linear) scoring functions,
determine the one that gives the highest rank
for a target object

6

Search Computing

Ranking with uncertain scoring
Uncertain scoring

§ Users are often unable to precisely specify
the scoring function

§ Using trial-and-error or machine learning
may be tedious and time consuming

§ Even when the function is known, it is
crucial to analyze the sensitivity of the
computed ordering wrt. changes in the
function

7

Search Computing

Ranking with uncertain scoring
Uncertain scoring

§ Assumptions:

• Linear scoring function
– S = w1s1 + w2s2 + … + wnsn

• User-defined weights w1, w2,…,wn are
– Uncertain, and, w.l.o.g.,
– normalized to sum up to 1

8

Search Computing

Ranking with uncertain scoring
Representing scoring functions on the simplex 9

§ Each point on the simplex represents a possible
scoring function

§ We assume that p(w) is uniform over the simplex

Search Computing

Ranking with uncertain scoring
Uncertain scoring

§ Uncertainty induces a probability
distribution on a set of possible orderings

§ Each ordering occurs with a probability

(weights in the simplex inducing that
ordering)

§ When N is large, we usually focus on a
prefix of length K<N of an ordering

10

Search Computing

§ Top-k query:

• Results and possible orderings:

Ranking with uncertain scoring
Example 11

Search Computing

Ranking with uncertain scoring
Objectives of our study (1/2)

§ Finding a representative ordering:
• Most Probable Ordering:

• Optimal Rank Aggregation:
– Ordering with the minimum average distance to

all other orderings
• Common distances between orderings:

– Kendall tau: number of pairwise disagreements in the
relative order of items

– Spearman’s footrule: sum of distances between the ranks
of the same item in the two orderings

12

Search Computing

Ranking with uncertain scoring
Example of MPO and ORA

§ For K=2, the MPO is <τ2, τ3>

§ ORA is λ3 both for Kendall tau and footrule

13

Search Computing

Ranking with uncertain scoring
Objectives of our study (2/2)

§ Quantifying sensitivity
• Stability of a chosen ordering wrt.

perturbations in the weights
– largest volume in the weights space, around an

input weight vector w, in which changing the
weights leaves the computed ordering unaltered

• Likelihood of a chosen ordering
– probability of obtaining an ordering identical to a

given one up to depth K

14

Search Computing

Ranking with uncertain scoring
Example of Stability

§ For w=(0.2,0.8) we have λ2

§ For K=2, the vector (.167,.833) is the
furthest that still induces λ2

§ The measure of stability is the distance
 ||(0.2,0.8) - (.167,.833) ||=0.047

15

Search Computing

Ranking with uncertain scoring
Example of Likelihood

§ For w=(0.5,0.5) we have λ3

§ For K=2, likelihood is
 p(λ3) + p(λ4)

 (λ3 and λ4 identical up to depth 2)

16

Search Computing

Ranking with uncertain scoring
Computing representative orderings

§ A naïve approach:
1. Enumerate possible weight vectors
2. Find the distinct orderings induced by these

vectors
3. Pick the required representative ordering

§ This is:
• Highly inefficient
• Inaccurate, since it requires discretizing the

weights space

17

Search Computing

Ranking with uncertain scoring
Efficient approaches

§ MPO requires processing prefixes

§ ORA requires processing full orderings

§ A holistic approach: succinct representation of
full orderings as disjoint partitions of the
space of weights
• Appropriate for ORA

§ An incremental approach: tree-based
representation that is incrementally
constructed by extending prefixes of orderings
• Appropriate for MPO

18

Search Computing

Ranking with uncertain scoring
Holistic approach

§ For each pair of join results Ti and Tj
• Divide the space of weights into two partitions based on

their aggregate score
– In one F(Ti)>F(Tj), in the other F(Ti)<F(Tj)

• The space is thus partitioned into O(N2^(d-1)) disjoint
convex polyhedra, each corresponding to an ordering

19

Search Computing

Ranking with uncertain scoring
Finding ORA using the holistic approach

§ ORA under Kendall tau for d=2
• Simply given by sorting join results using the sum of the

score components as the sort comparator
• Uses weak stochastic transitivity:

 if p(F(Ti)>F(Tj))>.5 and p(F(Tj)>F(Tk))>.5
 then p(F(Ti)>F(Tk))>.5

• Besides, p(F(Ti)>F(Tj))>.5 iff si,1 + si,2 > sj,1 + sj,2

• Complexity: O(N log N)
• NP-hard for d>2 (weak stochastic transitivity fails)

§ ORA under footrule
• O(N2.5) for d=2

– Min. cost perfect matching of a weighted bipartite graph
• O(N2^(d-1)) for d>2

§ NB: ORA-footrule is a 2-approximation of ORA-Kendall

20

Search Computing

Ranking with uncertain scoring
Incremental approach 21

§ Based on an incremental construction of a tree
representing the possible orderings

§ Each path from the root to a node at depth K
represents a possible prefix of length K

§ Probability values are assigned to each node

§ (probability of the corresponding prefix)

Search Computing

Ranking with uncertain scoring
Points corresponding to join results for d=2 22

Search Computing

Ranking with uncertain scoring
Tree construction 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 3

0
0

3
0.29

4
0.19

1
0.044

6
0.14

7
0.0075

7
0.099

1
0.031

4
0.035

5
0.033

7
0.53

3
0.12

5
0.035

10
0.087

8
0.31

10
0.31

10
0.099

3
0.02

8
0.079

8
0.18

7
0.18

10
0.18

Search Computing

Ranking with uncertain scoring
Observations

§ Tree generation analyzes only the convex hull of
the N points

• #points on the convex hull O((log N)d-1)

§ At each level, the regions in the weight space
corresponding to a node are polyhedra

24

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 3

Search Computing

Ranking with uncertain scoring
Generalization to d>2 25

Search Computing

Ranking with uncertain scoring
Tree size

§ Tree size does not grow exponentially

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 10

0

3

4

1

6

7

5

2

10

8

9

7

6

5

2

10

8

9

6

1

5

2

7

10

8

9

7

2

10

8

9

7

5

2

10

8

9

7

1

6

5

2

10

8

9

7

1

4

5

6

2

10

8

9

5

4

6

2

10

8

9

4

1

5

6

2

10

8

9

6

5

2

10

8

9

5

1

4

2

6

10

8

9

10

6

8

9

6

2

10

8

9

10

2

6

8

9

10

4

2

6

8

9

7

3

5

1

10

2

4

6

8

9

4

2

6

8

9

10

1

2

4

6

8

9

8

6

9

8

4

6

9

10

5

1

2

8

4

6

9

2

1

8

4

6

9

8

1

4

6

9

8

2

1

4

6

9

8

5

2

1

4

6

9

8

10

2

5

3

1

9

4

6

9

1

4

6

9

3

1

4

6

3

5

2

1

4

6

9

9

6

9

4

6

5

2

3

1

9

4

6

3

2

1

9

4

6

10

3

8

5

2

1

4

6

9

8

3

5

2

1

4

6

9

8

7

10

2

5

9

3

1

4

6

9

5

3

1

4

6

9

2

5

3

1

4

6

Search Computing

Ranking with uncertain scoring
Node probabilities and MPO

§ Computing node probabilities amounts to
computing volumes of convex polyhedra
• Shoelace formula…

§ This is NP-hard, and thus too expensive, in higher
dimensions

§ A Monte-Carlo sampling approach is therefore
adopted for d>2 (approximate solutions)

§ Optimization when searching for MPO:
• prune branches rooted at a node with probability less

than the current MPO candidate

27

Search Computing

Ranking with uncertain scoring
Stability for d=2 28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth = 3

Search Computing

Ranking with uncertain scoring
Stability for d=3 29

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Depth = 1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Depth = 2

Search Computing

Ranking with uncertain scoring
Summary of problems and complexities 30

Search Computing

Ranking with uncertain scoring
Not discussed in this talk

§ Pruning dominated join results

§ Preferences among weights

§ Experiments

31

Search Computing

Main References
Historical papers
§ Jean-Charles de Borda

Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, Paris 1781

§ Nicolas de Condorcet
Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785

§ Kenneth J. Arrow
A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328–346, 1950

Rank aggregation and ranking queries
§ Ronald Fagin, Ravi Kumar, D. Sivakumar

Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312

§ Ronald Fagin
Combining Fuzzy Information from Multiple Systems. PODS 1996: 216-226

§ Ronald Fagin
Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10

§ Ronald Fagin, Amnon Lotem, Moni Naor
Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines and k-Skybands
§ Stephan Börzsönyi, Donald Kossmann, Konrad Stocker

The Skyline Operator. ICDE 2001: 421-430

§ Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang
Skyline with Presorting. ICDE 2003: 717-719

§ Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger
Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Search Computing

Main References
Extensions of skylines: flexible skylines
§ Paolo Ciaccia, Davide Martinenghi

Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)

§ Paolo Ciaccia, Davide Martinenghi
FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

Extensions of ranking queries: uncertainty, proximity, diversity
§ Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi

Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011:
805-816

§ Davide Martinenghi, Marco Tagliasacchi
Proximity Rank Join. PVLDB 3(1): 352-363 (2010)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi
Top-k bounded diversification. SIGMOD Conference 2012: 421-432

§ Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Nørvåg
Reverse top-k queries. ICDE 2010: 365-376

§ Davide Martinenghi, Marco Tagliasacchi:
Cost-Aware Rank Join with Random and Sorted Access. IEEE Trans. Knowl. Data Eng. 24(12): 2143-2155
(2012)

§ Davide Martinenghi, Marco Tagliasacchi:
Proximity measures for rank join. ACM Trans. Database Syst. 37(1): 2:1-2:46 (2012)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Efficient Diversification of Top-k Queries over Bounded Regions. SEBD 2012: 139-146

§ Ilio Catallo, Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Top-k diversity queries over bounded regions. ACM Trans. Database Syst. 38(2): 10 (2013)

Search Computing

Main References
Web Access
§ Daniele Braga, Stefano Ceri, Florian Daniel, Davide Martinenghi:

Optimization of multi-domain queries on the web. Proc. VLDB Endow. 1(1): 562-573 (2008)

§ Andrea Calì, Davide Martinenghi:
Conjunctive Query Containment under Access Limitations. ER 2008: 326-340

§ Andrea Calì, Davide Martinenghi:
Querying Data under Access Limitations. ICDE 2008: 50-59

§ Andrea Calì, Diego Calvanese, Davide Martinenghi:
Dynamic Query Optimization under Access Limitations and Dependencies. J. Univers. Comput. Sci. 15(1): 33-62 (2009)

§ Andrea Calì, Davide Martinenghi:
Optimizing Query Processing for the Hidden Web. APWeb 2010: 397

§ Andrea Calì, Davide Martinenghi:
Querying the deep web. EDBT 2010: 724-727

34

