
Query Optimization in the Deep Web

Query Optimization in the Deep Web

Andrea Cal̀ı Davide Martinenghi

Oxford-Man Institute, University of Oxford
Department of Information Systems and Computing, Brunel University

Dipartimento di Elettronica e Informazione, Politecnico di Milano

Roma Tre University
Rome, 10 June 2010

Query Optimization in the Deep Web

Outline

1 Introduction

2 Surfacing

3 Query answering under access limitations

4 Optimization

5 Views and constraints

6 Containment

7 Dynamic optimization

8 Conclusions

Query Optimization in the Deep Web

Introduction

The deep Web

The deep Web

Query Optimization in the Deep Web

Introduction

The deep Web

The deep Web

Query Optimization in the Deep Web

Introduction

What is the Deep Web?

Web pages (HTML mostly) have been indexed and searched
for many years

Such pages constitute the so-called Surface Web

huge, invaluable amount of information

The web has also continuously “deepened”

searchable databases, accessible usually through HTML forms

The Deep Web (aka Hidden Web or Invisible Web) is not
effectively crawlable nor indexeable

it is largely unexplored, apart from manual queries issued by
users

Query Optimization in the Deep Web

Introduction

What is the Deep Web?

Web pages (HTML mostly) have been indexed and searched
for many years

Such pages constitute the so-called Surface Web

huge, invaluable amount of information

The web has also continuously “deepened”

searchable databases, accessible usually through HTML forms

The Deep Web (aka Hidden Web or Invisible Web) is not
effectively crawlable nor indexeable

it is largely unexplored, apart from manual queries issued by
users

Query Optimization in the Deep Web

Introduction

The conceptual view of the Deep Web [He et al. 2007]

Query Optimization in the Deep Web

Introduction

A study of the existing Deep Web [He at al. 2007]

Random sampling of 1M IP addresses

reserved and unused IPs removed

HTML forms as query interfaces

non-query forms removed: site-search, login, subscription etc.

duplicate query interfaces are removed

Query Optimization in the Deep Web

Introduction

Duplicate query interfaces: example

Query Optimization in the Deep Web

Introduction

Deep Web databases and sites

Often, different query interfaces access the same database

Two interfaces access the same data iff the objects retrieved
from one can be found by accessing the other, and vice-versa

Test: take five objects from one and check if they are found in
the other

Not always feasible!

Query Optimization in the Deep Web

Introduction

Where to find query interfaces

100k IPs sampled

281 web servers found, crawled up to depth 10

24 Deep Web sites
129 query interfaces
34 web databases

72% of interfaces within depth 3

94% of web databases appearing within depth 2

91.6% of Deep Web sites had their database within depth 3

Deep Web not too deep

Query Optimization in the Deep Web

Introduction

The scale of the Deep Web

1M IPs crawled up to depth 3

Extrapolating from the 1M IPs to the entire IP space we get
the following

Query Optimization in the Deep Web

Introduction

How structured is the Deep Web?

Unstructured databases: objects as unstructured media
(video, text, audio etc.)

Structured databases: attribute-value pairs (i.e., relational
tables)

Analysis by manual inspection

Query Optimization in the Deep Web

Introduction

Subject distribution of the Deep Web

Manual inspection

Great diversity

E-commerce sites only 49%

Deep Web sources emerging outside e-commerce

Query Optimization in the Deep Web

Introduction

Coverage of the Deep Web by search engines

Some Deep Web result pages can be indexed (reachable via
URL)
Test: on a sample subset of Deep Web sites:

manually access with five random inputs
checking if the result pages are indexed by executing suitable
searches

Query Optimization in the Deep Web

Introduction

Coverage of the Deep Web by search engines

Quite large coverage (Google and Yahoo! 32%) but with
significant overlap

The Deep Web is not completely invisible

however, a large part of it is!

Different situation on the Shallow Web

little coverage overlap
possibility of effectively combining different search engines

Query Optimization in the Deep Web

Introduction

Coverage of Deep Web directories

Web portals exist that classify Deep Web databases in
taxonomies

Small coverage (15.6% max; 0.2% in one case)

Manual (at least apparently) classification does not scale to
the large size of the Deep Web

Query Optimization in the Deep Web

Introduction

Access limitations

Access limitations

Query Optimization in the Deep Web

Introduction

Access limitations

Access limitations

Query Optimization in the Deep Web

Introduction

Sources with access limitations

Data sources in general may not always be queried freely:

Deep Web data accessible via forms
Legacy data wrapped in relational tables
Web services
...

Such sources are said to have access limitations

Some arguments may require to be bound to a constant
input vs output arguments
sometimes called bound vs free arguments

Query Optimization in the Deep Web

Introduction

Access limitations - synonyms

Access limitations are also commonly referred to as:

binding patterns
access patterns
access constraints
access hindrances

used only, but not always, by us

Query Optimization in the Deep Web

Introduction

Access limitations - synonyms

Access limitations are also commonly referred to as:

binding patterns
access patterns
access constraints
access hindrances
used only, but not always, by us

Query Optimization in the Deep Web

Introduction

Example of data with access limitations

Data behind forms

Data accessible through Web forms

phone directories
auctions
stores
...

Query Optimization in the Deep Web

Introduction

Modeling access limitations

Example: white pages

Impossible to ask for all entries (filling in no fields)

At least one field must be filled in

The result is a table

Modeling

We model each source as a relational table with access
limitations

Filling in a field in the form corresponds to querying with a
selection only

Query Optimization in the Deep Web

Introduction

Modeling access limitations

Example: white pages

Impossible to ask for all entries (filling in no fields)

At least one field must be filled in

The result is a table

Modeling

We model each source as a relational table with access
limitations

Filling in a field in the form corresponds to querying with a
selection only

Query Optimization in the Deep Web

Introduction

Example: whitepages.com – query

SELECT *
FROM whitepages
WHERE firstname=’Joseph’
AND lastname=’Noto’
AND stateprov=’NJ’

Query Optimization in the Deep Web

Introduction

Example: whitepages.com – query

SELECT *
FROM whitepages
WHERE firstname=’Joseph’
AND lastname=’Noto’
AND stateprov=’NJ’

Query Optimization in the Deep Web

Introduction

Example: whitepages.com – results

First Last House no. · · ·
Joseph Jr Noto 81 · · ·

Joseph Noto 21 · · ·
Joseph Noto 174 · · ·

Query Optimization in the Deep Web

Introduction

Example: whitepages.com – results

First Last House no. · · ·
Joseph Jr Noto 81 · · ·

Joseph Noto 21 · · ·
Joseph Noto 174 · · ·

Query Optimization in the Deep Web

Introduction

Relevant scenarios in the deep Web

Surfacing

Indexing of deep Web result pages for search engines

Centralized data integration

Sources are registered and wrapped in advance
Semantic mappings between sources and mediated schema are
manually built

Large-scale on-the-fly integration

Sources are chosen at query processing time

Query Optimization in the Deep Web

Surfacing

Surfacing

Surfacing

Query Optimization in the Deep Web

Surfacing

Surfacing

Surfacing

Query Optimization in the Deep Web

Surfacing

Surfacing the Deep Web

Surfacing precomputes relevant form submissions for all
available HTML forms

no specialization on a single domain

The resulting URLs are indexed as any other web page

The goal is a seamless inclusion of Deep Web pages into the
web

When a user clicks on a result, she is presented with fresh
data contents by being redirected to the Deep Web source

This allows for the inclusion of Deep Web pages into search
engines

Query Optimization in the Deep Web

Surfacing

Scalability and main challenges

The estimated number [Madhavan et al. 2007] of high-quality
HTML forms is 10M approximately

We need full automation

Any human effort would be useless

Main challenges of surfacing:

1 deciding which forms to fill
2 finding appropriate inputs for the forms

Query Optimization in the Deep Web

Surfacing

Considerations

There are different kinds of inputs:

1 selection inputs (e.g., pull-down)
2 text inputs
3 presentation inputs (e.g., sort-by)

The fundamental problem is finding a good set of for
submissions

Query Optimization in the Deep Web

Surfacing

Correlation among inputs

Some inputs might be correlated (e.g., city and state,
minSalary and maxSalary)

Therefore, the set of values for an input to be instantiated
should in principle different depending on the query template
(binding pattern)

However, this complicates things significantly

never considered in the literature

Query Optimization in the Deep Web

Surfacing

More considerations

In surfacing, we aim at maximizing the coverage on the
underlying data, while limiting the number of form
submissions

We want to cover as many Deep Web sites as possible

Better to cover relevant information from many sites than
deeply covering a few ones

We do not want to cover the full contents of a Deep Web site:
it is instead important to provide the search engine with seeds
to diverse information on the site.

Query Optimization in the Deep Web

Surfacing

Selecting query templates: a tradeoff

Selecting query templates with many input attributes retrieves
in general more data, but it increases crawling traffic
(generates all possible queries, or a large fraction of them)

On the other hand, choosing too few input attributes retrieves
too many tuples, often split into pages.

Tradeoff!

Query Optimization in the Deep Web

Surfacing

Informative query templates

A query template is informative if it generates several distinct
pages from its form submissions

Generated pages are assigned a signature; the higher the ratio
signatures/submissions, the more informative the query
template

Looking for informative templates

Bottom-up method: if a candidate template of dimension (no.
of input attributes) k is informative, we look for another of
dimension k + 1 that has as input attributes a superset of
those of the former.

This prunes the search significantly

Query Optimization in the Deep Web

Query answering under access limitations

Query Answering under Access Limitations

Query Answering under Access Limitations

Query Optimization in the Deep Web

Query answering under access limitations

Query Answering under Access Limitations

Query Answering under Access Limitations

Query Optimization in the Deep Web

Query answering under access limitations

Traditional data integration setting

Sources are wrapped as relational tables

with access limitations

They are registered to a central system (mediator) with a
reconciled schema

Mappings between the wrapped sources and the mediator are
manually (or semi-automatically) built

Queries are posed over the reconciled schema

We will focus on the problems posed by access limitations

Query Optimization in the Deep Web

Query answering under access limitations

Traditional data integration setting [Lenzerini IJCAI’03]

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,C), r1(T , ny,A)

Answering strategy: q cannot be executed from left to right

the body atoms of q can be reordered:

q′(A) ← r1(T , ny,A), r2(A, italy,C)

q and q′ are equivalent (q′ is executable and q is orderable)

its answer can be obtained as with no access limitations

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,C), r1(T , ny,A)

Answering strategy: q cannot be executed from left to right

the body atoms of q can be reordered:

q′(A) ← r1(T , ny,A), r2(A, italy,C)

q and q′ are equivalent (q′ is executable and q is orderable)

its answer can be obtained as with no access limitations

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,C), r1(T , ny,A)

Answering strategy: q cannot be executed from left to right

the body atoms of q can be reordered:

q′(A) ← r1(T , ny,A), r2(A, italy,C)

q and q′ are equivalent (q′ is executable and q is orderable)

its answer can be obtained as with no access limitations

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Finding the exact answer

Can a CQ always be answered with all the tuples that would be
found without access limitations?

Is CQ q executable as is from left to right?

It CQ q orderable into an executable query?

Orderability sometimes called feasibility (ambiguous) and
executability (ambiguous)
Can be considered as a syntactic version of executability
Reordering efficiently done in [Yang et al. PODS’06]

Is CQ q stable, i.e., equivalent to an executable query

Stability sometimes called feasibility (ambiguous)
Can be considered as a semantic version of executability

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Finding the exact answer

Can a CQ always be answered with all the tuples that would be
found without access limitations?

Is CQ q executable as is from left to right?

It CQ q orderable into an executable query?

Orderability sometimes called feasibility (ambiguous) and
executability (ambiguous)
Can be considered as a syntactic version of executability
Reordering efficiently done in [Yang et al. PODS’06]

Is CQ q stable, i.e., equivalent to an executable query

Stability sometimes called feasibility (ambiguous)
Can be considered as a semantic version of executability

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Finding the exact answer

Can a CQ always be answered with all the tuples that would be
found without access limitations?

Is CQ q executable as is from left to right?

It CQ q orderable into an executable query?

Orderability sometimes called feasibility (ambiguous) and
executability (ambiguous)
Can be considered as a syntactic version of executability
Reordering efficiently done in [Yang et al. PODS’06]

Is CQ q stable, i.e., equivalent to an executable query

Stability sometimes called feasibility (ambiguous)
Can be considered as a semantic version of executability

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Finding the exact answer

Can a CQ always be answered with all the tuples that would be
found without access limitations?

Is CQ q executable as is from left to right?

It CQ q orderable into an executable query?

Orderability sometimes called feasibility (ambiguous) and
executability (ambiguous)
Can be considered as a syntactic version of executability
Reordering efficiently done in [Yang et al. PODS’06]

Is CQ q stable, i.e., equivalent to an executable query

Stability sometimes called feasibility (ambiguous)
Can be considered as a semantic version of executability

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Examples

Schema: roio
1 (Title,City ,Artist),

r ioo
2 (Artist,Nation,City)

Query (executable): qe(A) ← r1(T , ny,A), r2(A, italy,C)
Query (orderable): qf (A) ← r2(A, italy,C), r1(T , ny,A)

Query (stable): qs(A) ← r2(A, italy,C), r1(T , ny,A), r1(T ,C ′,A)

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations
Results on stability

Theorem ([Li & Chang ICDT’01])

A CQ is stable iff its minimal equivalent is orderable.

Theorem ([Nash & Ludäscher PODS’04])

Stability is exactly as hard as query containment

Corollary ([Li & Chang ICDT’01])

Stability of conjunctive queries is NP-complete
Stability of Datalog queries in undecidable

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations
Results on orderability

Theorem ([Yang et al. PODS’06])

Orderability is in P for conjunctive queries

Theorem ([Nash & Ludäscher PODS’04])

Orderability is NP-complete for FO queries

Theorem ([Yang et al. PODS’06])

Orderability is PSPACE-complete for non-recursive Datalog queries

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Observations

Limitations generally restrict the answers we can retrieve

Queries are not always stable

We are interested in the best approximation of the query
answers

This might even require accessing off-query relations

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,modena)

Best effort answering: no executable reordering of q exists

Starting from the constant modena, we can access r1

then we can obtain tuples with new Artist constants

with such values we can access r2 and start over

We consider abstract domains (Year , Artist etc.)

? We assume never to enumerate domain values

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,modena)

Best effort answering: no executable reordering of q exists

Starting from the constant modena, we can access r1

then we can obtain tuples with new Artist constants

with such values we can access r2 and start over

We consider abstract domains (Year , Artist etc.)

? We assume never to enumerate domain values

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,modena)

Best effort answering: no executable reordering of q exists

Starting from the constant modena, we can access r1

then we can obtain tuples with new Artist constants

with such values we can access r2 and start over

We consider abstract domains (Year , Artist etc.)

? We assume never to enumerate domain values

Query Optimization in the Deep Web

Query answering under access limitations

Example

Superscripts denote input and output attributes

Schema: concerts and artists
roio
1 (Title,City ,Artist)

r ioo
2 (Artist,Nation,City)

Query

q(A) ← r2(A, italy,modena)

Best effort answering: no executable reordering of q exists

Starting from the constant modena, we can access r1

then we can obtain tuples with new Artist constants

with such values we can access r2 and start over

We consider abstract domains (Year , Artist etc.)

? We assume never to enumerate domain values

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City

conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Example (cont’d)

Relation r1

Title City Artist
azzurro modena conte

volare genoa modugno

K551 genoa kissin

sole mio moscow pavarotti

Relation r2

Artist Nation City
conte italy genoa

kissin russia moscow

modugno italy bari

pavarotti italy modena

Answer tuples

〈pavarotti〉

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Possible approximations

Maximal answer a.k.a. maximally contained answer or
reachable certain answer or obtainable answer

largest sound set of answer tuples that can be obtained by a
query plan that respects the access limitations

Minimally containing answer

smallest complete set of answer tuples that can be obtained by
a query plan that respects the access limitations

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Schema S with access limitations

Database instance D over S
Query q over D

Set of initially known constants I

Maximal answer denoted ans(q,S,D, I)

Finding the maximal answer

Basic technique in [Millstein et al. 2000]

Answering is inherently recursive

Need for a set of initial constants (usually those in the query)

Notion of abstract domain associated to an attribute

Encoding in positive Datalog

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Finding the maximal answer: execution strategy

To get all obtainable tuples, we need all possible constants for
input attributes

Enumerating all values of a domain: generally unfeasible

Use all constants in the query and all constants from tuples
retrieved from other relations

even those that are not mentioned in the query

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Naive algorithm to compute the maximal answer

1 B = set of constants initially in the query

2 C = set of caches (one per relation)

3 while new valid accesses are possible

Make all accesses you can with constants in B
Put the obtained tuples in the corresponding cache in C
Put the obtained constants in B

4 Evaluate the query over the cache

Answerability

A query q is answerable if there exists at least an instance D such
that the maximal answer to q in D is non-empty (unanswerable
otherwise)

Query Optimization in the Deep Web

Query answering under access limitations

Query answering under access limitations

Naive algorithm to compute the maximal answer

1 B = set of constants initially in the query

2 C = set of caches (one per relation)

3 while new valid accesses are possible

Make all accesses you can with constants in B
Put the obtained tuples in the corresponding cache in C
Put the obtained constants in B

4 Evaluate the query over the cache

Answerability

A query q is answerable if there exists at least an instance D such
that the maximal answer to q in D is non-empty (unanswerable
otherwise)

Query Optimization in the Deep Web

Query answering under access limitations

Properties of queries under access limitations

Examples

Schema: roio
1 (Title,City ,Artist), r ioo

2 (Artist,Nation,City)
executable: qe(A) ← r1(T , ny,A), r2(A, italy,C)

orderable: qf (A) ← r2(A, italy,C), r1(T , ny,A)
stable: qs(A) ← r2(A, italy,C), r1(T , ny,A), r2(T ,C ′,A)

answerable: qa(A) ← r2(A, italy,modena)
unanswerable: qu(A) ← r2(A, italy,C)

query executable orderable stable answerable

qe yes yes yes yes

qf yes yes yes

qs yes yes

qa yes

qu no no no no

Query Optimization in the Deep Web

Query answering under access limitations

Naive program for previous example

ρ1 : q(A) ← r̂2(A, italy,modena)
ρ2 : r̂1(T ,C ,A) ← domC (C), r1(T ,C ,A)
ρ3 : r̂2(A,N,C) ← domA(A), r2(A,N,C)
ρ4 : domT (T) ← r̂1(T ,C ,A)
ρ5 : domC (C) ← r̂1(T ,C ,A)
ρ6 : domA(A) ← r̂1(T ,C ,A)
ρ7 : domA(A) ← r̂2(A,N,C)
ρ8 : domN(N) ← r̂2(A,N,C)
ρ9 : domC (C) ← r̂2(A,N,C)
ρ10 : domN(italy)
ρ11 : domC (modena)

rewritten query : ρ1

cache rules: ρ2, ρ3

domain rules: ρ4 − ρ11

initial constants: italy,modena

Query Optimization in the Deep Web

Query answering under access limitations

Naive program for previous example

ρ1 : q(A) ← r̂2(A, italy,modena)
ρ2 : r̂1(T ,C ,A) ← domC (C), r1(T ,C ,A)
ρ3 : r̂2(A,N,C) ← domA(A), r2(A,N,C)
ρ4 : domT (T) ← r̂1(T ,C ,A)
ρ5 : domC (C) ← r̂1(T ,C ,A)
ρ6 : domA(A) ← r̂1(T ,C ,A)
ρ7 : domA(A) ← r̂2(A,N,C)
ρ8 : domN(N) ← r̂2(A,N,C)
ρ9 : domC (C) ← r̂2(A,N,C)
ρ10 : domN(italy)
ρ11 : domC (modena)

rewritten query : ρ1

cache rules: ρ2, ρ3

domain rules: ρ4 − ρ11

initial constants: italy,modena

Query Optimization in the Deep Web

Query answering under access limitations

Naive program for previous example

ρ1 : q(A) ← r̂2(A, italy,modena)
ρ2 : r̂1(T ,C ,A) ← domC (C), r1(T ,C ,A)
ρ3 : r̂2(A,N,C) ← domA(A), r2(A,N,C)
ρ4 : domT (T) ← r̂1(T ,C ,A)

��ρ5 : �����
domC (C) ��← ������

r̂1(T ,C ,A)
ρ6 : domA(A) ← r̂1(T ,C ,A)

��ρ7 : �����domA(A) ��← ������
r̂2(A,N,C)

ρ8 : domN(N) ← r̂2(A,N,C)
ρ9 : domC (C) ← r̂2(A,N,C)
ρ10 : domN(italy)
ρ11 : domC (modena)

rewritten query : ρ1

cache rules: ρ2, ρ3

domain rules: ρ4 − ρ11

initial constants: italy,modena

Query Optimization in the Deep Web

Optimization

Finding the relevant relations

Finding the relevant relations

Query Optimization in the Deep Web

Optimization

Finding the relevant relations

Finding the relevant relations

Query Optimization in the Deep Web

Optimization

Optimizing the execution strategy

The naive algorithm

Inefficient bottom-up approach:

All relations in the schema are always accessed in all possible
ways
Accesses are costly (sources on the Web)

Idea: avoiding irrelevant accesses

Some of the relations may be irrelevant to the query, i.e., they
cannot help discovering tuples in the maximal answer

This depends on the query and the schema
Not only the relations mentioned in the query, but also the
joins between them

Accesses to such relations should be avoided

Query Optimization in the Deep Web

Optimization

Optimizing the execution strategy

The naive algorithm

Inefficient bottom-up approach:

All relations in the schema are always accessed in all possible
ways
Accesses are costly (sources on the Web)

Idea: avoiding irrelevant accesses

Some of the relations may be irrelevant to the query, i.e., they
cannot help discovering tuples in the maximal answer

This depends on the query and the schema
Not only the relations mentioned in the query, but also the
joins between them

Accesses to such relations should be avoided

Query Optimization in the Deep Web

Optimization

Relevance

Definition: relevance

A relation r is relevant for a query q if there are two instances
D1,D2 that differ only on the tuples of R, and such that
ans(q,S,D1, I) 6= ans(q,S,D2, I).

ans(q,S,D, I): maximal answer to q over schema S (with
limitations Λ), evaluated over database D using initial constants I
(superset of those in q), as with the naive algorithm

Determining relevance

solved for connection queries in [Li & Chang TODS’01]

solved for CQs with no projections in [C&M ICDE’08]

Query Optimization in the Deep Web

Optimization

Relevance

Definition: relevance

A relation r is relevant for a query q if there are two instances
D1,D2 that differ only on the tuples of R, and such that
ans(q,S,D1, I) 6= ans(q,S,D2, I).

ans(q,S,D, I): maximal answer to q over schema S (with
limitations Λ), evaluated over database D using initial constants I
(superset of those in q), as with the naive algorithm

Determining relevance

solved for connection queries in [Li & Chang TODS’01]

solved for CQs with no projections in [C&M ICDE’08]

Query Optimization in the Deep Web

Optimization

Connection queries [Li &Chang TODS’01]

Definition

A connection query is a UCQ such that

in each CQ, all attributes with the same domain are in a join

Connection queries are useful for relations with disparate
domains

Query Optimization in the Deep Web

Optimization

Connection queries [Li &Chang TODS’01]

Queries specified as 〈I ,O,C 〉
I is a list of input assignments attribute=constant
O is a list of output attributes the user is interested in
C is a list of connections, i.e., natural joins between relations,
each join defining a CQ
example: Q = 〈{Song = t1}, {Price}, {C1,C2,C3,C4}〉, where
C1 = {v1, v3}, C2 = {v1, v4}, C3 = {v2, v3}, C4 = {v2, v4}

Query Optimization in the Deep Web

Optimization

Connection queries [Li &Chang TODS’01]

A rewriting as a Datalog query can be provided that does not
use any non-relevant relation

? Connection queries do not cover CQs

Example: not a connection query

Schema: supervisoroi (Person,Person)

Can only ask who is supervisor of him/herself

q(X)← supervisor(X ,X) is a connection query

q(X ,Y)← supervisor(X ,Y) is not a connection query

Query Optimization in the Deep Web

Optimization

Relevance for CQs with no projections

Relevance defined w.r.t. the body of a CQ in [C&M ICDE’08]

This is equivalent to considering CQs with no projections

Albeit incomplete, this notion of relevance allows pruning
(some, perhaps not all) irrelevant relations from a query plan

Query Optimization in the Deep Web

Optimization

Relevance for CQs with no projections

Given a query and the schema, we represent dependencies
among relations with a dependency graph (d-graph):

nodes are attributes
arcs tell which attributes provide values to feed attributes

Sketchily represents how to extracts answers with the naive
approach

We prune non-relevant relations and accesses by deleting
edges

Query Optimization in the Deep Web

Optimization

Dependency graph

Nodes in the d-graph of query q:

One black node for each argument of each atom occurring in q

One white node for each argument of each relation not
occurring in q

Also marked with the access mode and the abstract domain

Arcs u → v (v can receive values from u) if

u and v have the same domain

u is an output argument

v is an input argument

Query Optimization in the Deep Web

Optimization

Example

Schema
showing io(Location,Movie) actor io(Movie,Person)
married io(Person,Person) moviestaro(Person)
productionio(Studio,Movie)

Query

“actors in movies showing in New-York whose spouse has also
played in some movie”
q(A) ← showing(ny ,M), actor(M,A),

married(A,A′), actor(M ′,A′)
rewritten as
q(A) ← ny(L),showing(L,M), actor(M,A),

married(A,A′), actor(M ′,A′)

Query Optimization in the Deep Web

Optimization

Example

Schema
showing io(Location,Movie) actor io(Movie,Person)
married io(Person,Person) moviestaro(Person)
productionio(Studio,Movie)

Query

“actors in movies showing in New-York whose spouse has also
played in some movie”
q(A) ← showing(ny ,M), actor(M,A),

married(A,A′), actor(M ′,A′)
rewritten as
q(A) ← ny(L),showing(L,M), actor(M,A),

married(A,A′), actor(M ′,A′)

Query Optimization in the Deep Web

Optimization

Example: d-graph

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Marking the d-graph

Strong and weak arcs: intuition

A strong arc u → v denotes that v is “fed” through a join
with values from u

A weak arc u → v denotes that v is “fed” with values from u
but there is no join

In the presence of a strong arc incoming on v , all weak arcs
arcs incoming on v are unnecessary

unless they are needed to provide values to other nodes

Strong arcs represent conditions that must hold all at the
same time (intersection)

Weak arcs represent conditions that are in a union

Query Optimization in the Deep Web

Optimization

Pruning the d-graph

More terminology

Candidate: arc whose corresponding nodes are in a join

Cyclic: candidate that is in a cyclic path of candidates

Acyclicity enforced on strong arcs to preserve the maximal
answer

Determining strong and weak arcs

Initial markings (as big as possible):

Strong arcs S0 = all acyclic candidates
Deleted arcs D0 = all arcs that are not candidates
A fixpoint algorithm unmarks the arcs until a consistent
configuration is found

Query Optimization in the Deep Web

Optimization

Example: d-graph (not marked)

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Example (cont’d): initial markings

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Unmarking deleted arcs not dominated by a strong arc

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Unmarking strong arc followed by a weak arc

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Fixpoint reached

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Removing isolated white relations

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Removing unaccessible white relations

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

Query Optimization in the Deep Web

Optimization

Optimized query plan from the pruned d-graph

ρ1 : q(A) ← ˆshowing(ny,M), ˆactor1(M,A),
ˆmarried(A,A′), ˆactor2(M ′,A′)

ρ2 : ˆactor1(M,P) ← actor(M,P), domMovie1(M)
ρ3 : ˆactor2(M,P) ← actor(M,P), domMovie2(M)

ρ4 : ˆmarried(P1,P2) ← married(P1,P2), domPerson(P1)

ρ5 : ˆshowing(L,M) ← showing(L,M), domLocation(L)

ρ6 : domMovie1(M) ← ˆshowing(,M)

ρ7 : domMovie2(M) ← ˆshowing(,M)
ρ8 : domPerson(P) ← ˆactor(,P)
ρ9 : domLocation(ny)

rewritten query : ρ1

cache rules: ρ2, ρ5

domain rules: ρ6 − ρ9

initial constants: ny

Query Optimization in the Deep Web

Optimization

Optimized query plan from the pruned d-graph

ρ1 : q(A) ← ˆshowing(ny,M), ˆactor1(M,A),
ˆmarried(A,A′), ˆactor2(M ′,A′)

ρ2 : ˆactor1(M,P) ← actor(M,P), domMovie1(M)
ρ3 : ˆactor2(M,P) ← actor(M,P), domMovie2(M)

ρ4 : ˆmarried(P1,P2) ← married(P1,P2), domPerson(P1)

ρ5 : ˆshowing(L,M) ← showing(L,M), domLocation(L)

ρ6 : domMovie1(M) ← ˆshowing(,M)

ρ7 : domMovie2(M) ← ˆshowing(,M)
ρ8 : domPerson(P) ← ˆactor(,P)
ρ9 : domLocation(ny)

rewritten query : ρ1

cache rules: ρ2, ρ5

domain rules: ρ6 − ρ9

initial constants: ny

Query Optimization in the Deep Web

Optimization

Optimized query plan in a more compact form

ρ1 : q(A) ← ˆshowing(ny,M), ˆactor(M,A),
ˆmarried(A,A′), ˆactor(M ′,A′)

ρ2 : ˆactor(M,P) ← actor(M,P), ˆshowing(,M)

ρ3 : ˆmarried(P1,P2) ← married(P1,P2), ˆactor(,P1)

ρ4 : ˆshowing(ny ,M) ← showing(ny ,M)

rewritten query : ρ1

cache rules: ρ2, ρ4

initial constants: ny

Query Optimization in the Deep Web

Optimization

Optimized query plan in a more compact form

ρ1 : q(A) ← ˆshowing(ny,M), ˆactor(M,A),
ˆmarried(A,A′), ˆactor(M ′,A′)

ρ2 : ˆactor(M,P) ← actor(M,P), ˆshowing(,M)

ρ3 : ˆmarried(P1,P2) ← married(P1,P2), ˆactor(,P1)

ρ4 : ˆshowing(ny ,M) ← showing(ny ,M)

rewritten query : ρ1

cache rules: ρ2, ρ4

initial constants: ny

Query Optimization in the Deep Web

Optimization

Properties of the pruned d-graph

Extraction forest

Roots: tuples in the input-free relations
Nodes: tuples in the DB
Arcs uyv : if output attribute in u is used in input attribute in v

ny(ny)

showing(ny,m1) showing(ny,m2)

actor(m1,p1) actor(m2,p2)

married(p1,p2)

Query Optimization in the Deep Web

Optimization

Properties of the pruned d-graph

Properties of deleted arcs in the pruned d-graph

If uyv is deleted, then each tuple in the answer has an
extraction forest not containing uyv

If uyv is not deleted, then there is a database such that the
answer contains a tuple whose extraction forests all contain
uyv

 moviestar

P

 production

M

S

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

 actor(2)

P

M

 married(1)

P

P

 actor(1)

P

M

 showing(1)

M

L

 ny

L

ny(ny)

showing(ny,m1) showing(ny,m2)

actor(m1,p1) actor(m2,p2)

married(p1,p2)

Query Optimization in the Deep Web

Optimization

Main results

Theorem: relevant sources

Relevant sources are exactly those appearing in the pruned d-graph

Tractability result

The algorithm performs a visit of the d-graph, visiting all
edges plus some “neighbours” for every node

? polynomial time complexity in the size of the d-graph

Query Optimization in the Deep Web

Optimization

Main results

Theorem: relevant sources

Relevant sources are exactly those appearing in the pruned d-graph

Tractability result

The algorithm performs a visit of the d-graph, visiting all
edges plus some “neighbours” for every node

? polynomial time complexity in the size of the d-graph

Query Optimization in the Deep Web

Optimization

Extensions

General CQs

The same technique cannot be extended to boolean CQs with
cycles in the dependency graph

A relation r might be relevant to obtain all possible values
(interesting for non-boolean queries) for some attributes
but maybe a value can be obtained without r

A fortiori, this technique does not extend to general CQs

Stability can be reduced to non-relevance

Testing relevance for CQs is coNP-hard

Query Optimization in the Deep Web

Optimization

Extensions

General CQs

The same technique cannot be extended to boolean CQs with
cycles in the dependency graph

A relation r might be relevant to obtain all possible values
(interesting for non-boolean queries) for some attributes
but maybe a value can be obtained without r

A fortiori, this technique does not extend to general CQs

Stability can be reduced to non-relevance

Testing relevance for CQs is coNP-hard

Query Optimization in the Deep Web

Optimization

Extensions

“Natural” CQs

The d-graph technique can be extended to CQs obtained as
the Cartesian product of non-boolean connected queries

Connected: every atom has a join with at least another atom
in the query
Non-boolean: there is at least one variable in the head
Very natural sub-class of CQs
Problem with boolean CQs isolated in each connected part

Adding safe negation

Safe negation can be added with no trouble

Negated atoms are immaterial to access limitations

Query Optimization in the Deep Web

Optimization

Extensions

“Natural” CQs

The d-graph technique can be extended to CQs obtained as
the Cartesian product of non-boolean connected queries

Connected: every atom has a join with at least another atom
in the query
Non-boolean: there is at least one variable in the head
Very natural sub-class of CQs
Problem with boolean CQs isolated in each connected part

Adding safe negation

Safe negation can be added with no trouble

Negated atoms are immaterial to access limitations

Query Optimization in the Deep Web

Optimization

Extensions

Datalog

Determining relevance for Datalog queries is undecidable

Query containment in Datalog is undecidable
Query containment in Datalog can be reduced to relevance

Query Optimization in the Deep Web

Optimization

Minimality of query plans

Minimality of query plans

Query Optimization in the Deep Web

Optimization

Minimality of query plans

Query plan

A deterministic program respecting the access limitations

∀-minimality (strong)

A query plan Π is ∀-minimal iff, for every database D for S,
Acc(D,Π) ⊆ Acc(D,Π′) for every query plan Π′ of Q.

Acc(D,Π) is the set of accesses to relations done by Π over D.

Proposition

∀-minimality does not always exist.

Example: q(X)← r1(X), r2(Y) on schema {ro
1 , r

o
2 }

Query Optimization in the Deep Web

Optimization

Minimality of query plans

Query plan

A deterministic program respecting the access limitations

∀-minimality (strong)

A query plan Π is ∀-minimal iff, for every database D for S,
Acc(D,Π) ⊆ Acc(D,Π′) for every query plan Π′ of Q.

Acc(D,Π) is the set of accesses to relations done by Π over D.

Proposition

∀-minimality does not always exist.

Example: q(X)← r1(X), r2(Y) on schema {ro
1 , r

o
2 }

Query Optimization in the Deep Web

Optimization

Minimality of query plans

Query plan

A deterministic program respecting the access limitations

∀-minimality (strong)

A query plan Π is ∀-minimal iff, for every database D for S,
Acc(D,Π) ⊆ Acc(D,Π′) for every query plan Π′ of Q.

Acc(D,Π) is the set of accesses to relations done by Π over D.

Proposition

∀-minimality does not always exist.

Example: q(X)← r1(X), r2(Y) on schema {ro
1 , r

o
2 }

Query Optimization in the Deep Web

Optimization

Weaker minimality of plans

Preliminary criterion

Π′ ≺ Π whenever, for every database D, Acc(D,Π′) ⊆ Acc(D,Π)
and there is a database D ′ such that Acc(D ′,Π′) ⊂ Acc(D ′,Π).

≺-minimality

Π is ≺-minimal iff for no query plan Π′′ for Q it holds Π′′ ≺ Π.

Observations

A ≺-minimal plan always exists for every query

It is unique iff a ∀-minimal plan exists

in this case they coincide

Query Optimization in the Deep Web

Optimization

Results on ≺-minimality

A ≺-minimal plan is always derivable from the pruned d-graph

For “natural” CQs

Plans can be expressed in Datalog

with left-to-right execution of body atoms
? plus some ad-hoc strategies required for evaluation

Fast-failing strategy

Stop evaluation as soon as the result is certainly empty:

Some of the caches are known to be empty, or

Some of the joins in the query are known to fail

Query Optimization in the Deep Web

Optimization

Results on ≺-minimality

A ≺-minimal plan is always derivable from the pruned d-graph

For “natural” CQs

Plans can be expressed in Datalog

with left-to-right execution of body atoms
? plus some ad-hoc strategies required for evaluation

Fast-failing strategy

Stop evaluation as soon as the result is certainly empty:

Some of the caches are known to be empty, or

Some of the joins in the query are known to fail

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Query rewriting with views and constraints

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Very general setting given in [Deutsch et al. TCS’07]:

UCQ¬ query q
Set of views V
Set of access limitations Λ
Set of integrity constraints Σ

Problem {q,V ,Λ,Σ}: rewriting queries using views in the
presence of access patterns and integrity constraints

Interest in finding rewritings providing

the maximally contained answer
the minimally containing answer

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Very general setting given in [Deutsch et al. TCS’07]:

UCQ¬ query q
Set of views V
Set of access limitations Λ
Set of integrity constraints Σ

Problem {q,V ,Λ,Σ}: rewriting queries using views in the
presence of access patterns and integrity constraints

Interest in finding rewritings providing

the maximally contained answer
the minimally containing answer

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Possible reductions:

Encoding the views into the constraints:
{q,V ,Λ,Σ} {q,Λ,Σ′}

Encoding the access limitations into the constraints:
{q,V ,Λ,Σ} {q,V ,Σ′′}

Finally, only the query and the constraint remain:

{q,V ,Λ,Σ} {q,Λ,Σ′} {q,Σ′′′}
{q,V ,Λ,Σ} {q,V ,Σ′′} {q,Σ′′′′}

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Possible reductions:

Encoding the views into the constraints:
{q,V ,Λ,Σ} {q,Λ,Σ′}
Encoding the access limitations into the constraints:
{q,V ,Λ,Σ} {q,V ,Σ′′}

Finally, only the query and the constraint remain:

{q,V ,Λ,Σ} {q,Λ,Σ′} {q,Σ′′′}
{q,V ,Λ,Σ} {q,V ,Σ′′} {q,Σ′′′′}

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Possible reductions:

Encoding the views into the constraints:
{q,V ,Λ,Σ} {q,Λ,Σ′}
Encoding the access limitations into the constraints:
{q,V ,Λ,Σ} {q,V ,Σ′′}

Finally, only the query and the constraint remain:

{q,V ,Λ,Σ} {q,Λ,Σ′} {q,Σ′′′}

{q,V ,Λ,Σ} {q,V ,Σ′′} {q,Σ′′′′}

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Possible reductions:

Encoding the views into the constraints:
{q,V ,Λ,Σ} {q,Λ,Σ′}
Encoding the access limitations into the constraints:
{q,V ,Λ,Σ} {q,V ,Σ′′}

Finally, only the query and the constraint remain:

{q,V ,Λ,Σ} {q,Λ,Σ′} {q,Σ′′′}
{q,V ,Λ,Σ} {q,V ,Σ′′} {q,Σ′′′′}

Query Optimization in the Deep Web

Views and constraints

Query rewriting with views and constraints

Theorem ([Deutsch et al. TCS’07])

Stability is NP-complete in the size of the query for fixed views and
inclusion constraints over UCQs and ΠP

2 -complete for UCQ¬s

The above result uses a chasing technique and holds only for
those cases in which the chase exists

Checking whether the chase exists is undecidable

Fairly general sufficient conditions exist, though

Query Optimization in the Deep Web

Containment

Query containment under access limitations

Query containment under access limitations

Query Optimization in the Deep Web

Containment

Query containment under access limitations

Query containment under access limitations

Query Optimization in the Deep Web

Containment

The containment problem

Notation

Conjunctive queries q1, q2

Relational schema S
q(D): answer to q evaluated on database D

Containment

Containment q1 ⊆ q2 holds if for every database D for S we have

q1(D) ⊆ q2(D)

Query Optimization in the Deep Web

Containment

The containment problem

Notation

Conjunctive queries q1, q2

Relational schema S
q(D): answer to q evaluated on database D

Containment

Containment q1 ⊆ q2 holds if for every database D for S we have

q1(D) ⊆ q2(D)

Query Optimization in the Deep Web

Containment

The containment problem (cont’d)

Containment is useful for:

query minimization

used to decide stability of a query

optimization of query execution

in general, optimization of formulas

e.g., containment can be used to simplify the evaluation of
integrity constraints during integrity checking

. . .

Query Optimization in the Deep Web

Containment

Conjunctive query containment: algorithm

1 freeze body(q1) and head(q1) by turning each variable into a
distinct (fresh) constant

2 evaluate q2 over the frozen body of q1

3 q1 ⊆ q2 iff the evaluation returns the frozen head of q1

Testing containment amounts to checking the existence of a query
homomorphism from q2 to q1 [Chandra & Merlin 1977].

Query Optimization in the Deep Web

Containment

Example

From [Ullman 1997]

q1 : p(X ,Z) ← a(X ,Y), a(Y ,Z)
q2 : p(X ,Z) ← a(X ,U), a(V ,Z)

Frozen body(q1):
a(0, 1)←
a(1, 2)←

Frozen head(q1): p(0, 2)←

Query Optimization in the Deep Web

Containment

Example

From [Ullman 1997]

q1 : p(X ,Z) ← a(X ,Y), a(Y ,Z)
q2 : p(X ,Z) ← a(X ,U), a(V ,Z)

Frozen body(q1):
a(0, 1)←
a(1, 2)←

Frozen head(q1): p(0, 2)←

Query Optimization in the Deep Web

Containment

Example

From [Ullman 1997]

q1 : p(X ,Z) ← a(X ,Y), a(Y ,Z)
q2 : p(X ,Z) ← a(X ,U), a(V ,Z)

Frozen body(q1):
a(0, 1)←
a(1, 2)←

Frozen head(q1): p(0, 2)←

Query Optimization in the Deep Web

Containment

Example (contd.)

Applying q2 to the frozen body(q1), we find an answer substitution:

X → 0, U → 1, V → 1, Z → 2

that yields p(0, 2) which is the frozen head of q1.

Therefore q1 ⊆ q2.

Note

The frozen body of q1 is a representative of (a piece of) all
databases that provide an answer to q1

Query Optimization in the Deep Web

Containment

Example (contd.)

Applying q2 to the frozen body(q1), we find an answer substitution:

X → 0, U → 1, V → 1, Z → 2

that yields p(0, 2) which is the frozen head of q1.
Therefore q1 ⊆ q2.

Note

The frozen body of q1 is a representative of (a piece of) all
databases that provide an answer to q1

Query Optimization in the Deep Web

Containment

Example (contd.)

Applying q2 to the frozen body(q1), we find an answer substitution:

X → 0, U → 1, V → 1, Z → 2

that yields p(0, 2) which is the frozen head of q1.
Therefore q1 ⊆ q2.

Note

The frozen body of q1 is a representative of (a piece of) all
databases that provide an answer to q1

Query Optimization in the Deep Web

Containment

The containment problem with access limitations

Notation

Conjunctive queries q1, q2

Relational schema S with limitations Λ

Initial constants I ⊇ const(q1) ∪ const(q2)

ans(q,S,D, I): maximal answer to q evaluated on a schema
S under limitations Λ using initial constants I on database D.

Containment

Containment q1 ⊆Λ,I q2 under limitations holds if for every
database D for S we have

ans(q1,S,D, I) ⊆ ans(q2,S,D, I)

Query Optimization in the Deep Web

Containment

The containment problem with access limitations

Notation

Conjunctive queries q1, q2

Relational schema S with limitations Λ

Initial constants I ⊇ const(q1) ∪ const(q2)

ans(q,S,D, I): maximal answer to q evaluated on a schema
S under limitations Λ using initial constants I on database D.

Containment

Containment q1 ⊆Λ,I q2 under limitations holds if for every
database D for S we have

ans(q1,S,D, I) ⊆ ans(q2,S,D, I)

Query Optimization in the Deep Web

Containment

Comparing the two containments

q1 ⊆ q2 |= q1 ⊆Λ,I q2

Can be seen by applying homomorphisms:

If there are extractible instances of the atoms in body(q1)

then there are extractible instances of the atoms in body(q2)

that produce the same head

q1 ⊆Λ,I q2 6|= q1 ⊆ q2

Example:

Schema: r io
1 (A,X), roo

2 (B,X)

q1: q1(X)← r1(A,X) q2: q2(X)← r2(B,X)

We have q1 ⊆Λ,I q2, e.g., for I = ∅
but clearly q1 6⊆ q2

Query Optimization in the Deep Web

Containment

Comparing the two containments

q1 ⊆ q2 |= q1 ⊆Λ,I q2

Can be seen by applying homomorphisms:

If there are extractible instances of the atoms in body(q1)

then there are extractible instances of the atoms in body(q2)

that produce the same head

q1 ⊆Λ,I q2 6|= q1 ⊆ q2

Example:

Schema: r io
1 (A,X), roo

2 (B,X)

q1: q1(X)← r1(A,X) q2: q2(X)← r2(B,X)

We have q1 ⊆Λ,I q2, e.g., for I = ∅
but clearly q1 6⊆ q2

Query Optimization in the Deep Web

Containment

The containment problem with access limitations (cont’d)

A conjunctive query q under access limitations can be
rewritten as an executable (recursive) Datalog program that
retrieves the maximal answer to q

Therefore, checking containment amounts to checking
containment between two Datalog programs

Not a good idea: Datalog query containment is undecidable

however, programs have a special form

Query Optimization in the Deep Web

Containment

Decidability of the problem

Query containment is actually decidable under access
limitations even for more expressive classes than CQs

Theorem (Millstein et al. JCSS’03)

Given

a (potentially recursive) datalog program Q1

a nonrecursive datalog program Q2

a set Λ of one access pattern adornment for each relation

determining whether Q1 ⊆Λ,I Q2 is decidable.

Query Optimization in the Deep Web

Containment

Reducing containment to monadic datalog

Conjunctive query containment under access limitation can be
reduced to containment between monadic datalog programs
A datalog program is monadic if its recursive predicates are
monadic

Theorem (Li & Chang TODS’01)

Containment of connection queries under access limitations is
decidable

This easily extends to general conjunctive queries

Theorem (Li & Chang TODS’01)

Containment of CQs under access limitations is decidable

Same complexity (2EXPTIME) as containment between
monadic datalog programs

Query Optimization in the Deep Web

Containment

Direct approach to containment checking

A direct approach to query containment under access
limitations can be given

This gives also a slightly improved complexity bound

Query Optimization in the Deep Web

Containment

The chase

How can we find a representative of (a piece of) all databases that
provide an answer to q1 in the case with access limitations?

The chase

Used for:

query containment under relational dependencies [Johnson &
Klug 1984]

implication of relational dependencies

querying incomplete data

data integration and data exchange

. . .

We have a different version. . .

Query Optimization in the Deep Web

Containment

The chase

How can we find a representative of (a piece of) all databases that
provide an answer to q1 in the case with access limitations?

The chase

Used for:

query containment under relational dependencies [Johnson &
Klug 1984]

implication of relational dependencies

querying incomplete data

data integration and data exchange

. . .

We have a different version. . .

Query Optimization in the Deep Web

Containment

The chase

How can we find a representative of (a piece of) all databases that
provide an answer to q1 in the case with access limitations?

The chase

Used for:

query containment under relational dependencies [Johnson &
Klug 1984]

implication of relational dependencies

querying incomplete data

data integration and data exchange

. . .

We have a different version. . .

Query Optimization in the Deep Web

Containment

The crayfish-chase

Query Optimization in the Deep Web

Containment

The crayfish-chase

Query Optimization in the Deep Web

Containment

The crayfish-chase

Idea

We construct an extraction tree producing exactly the frozen
body of q1

We proceed backwards (moving as a crayfish)

We start from the frozen body of q1

We add tuples that provide values used in the input fields of
the tuples in the frozen body of q1

Then we add tuples that provide values for the input fields of
the previous tuples
and so on
we continue until we “close off” with tuples for relations that
have no input field

Query Optimization in the Deep Web

Containment

The crayfish-chase: example

Schema
r iio
1 (A,B,A)

r io
2 (A,B)

ro
3 (A)

Query

q(X2)← r1(a,X1,X2)

answerable but non-executable

W.l.o.g., we use constant-free queries

First the query is frozen, then “expanded” by chasing

? Special constants ζi denote unknown values (labelled nulls)

Query Optimization in the Deep Web

Containment

The crayfish-chase: example (cont’d)

Query with constants eliminated

q(X2)← r1(Xa,X1,X2), `a(Xa)

`a is an aux. predicate with extension {〈a〉}
the chase starts from the frozen body

Frozen head

q(ζ2)

Frozen body

r1(ζ0, ζ1, ζ2), `a(ζ0)

Query Optimization in the Deep Web

Containment

Example of instance in the crayfish-chase

Query Optimization in the Deep Web

Containment

Example: another instance in the crayfish-chase

Query Optimization in the Deep Web

Containment

The crayfish-chase

Features

Each constructible extraction tree producing the frozen body
of q is a database of the crayfish chase

The crayfish chase is

a set of databases, denoted cchase(q,S, I)
a forest of extraction trees, layered in levels

Every database represents one way of “extracting” an answer
tuple

Thus, the chase may serve as a tool for containment

Query Optimization in the Deep Web

Containment

Main property of the crayfish-chase

Theorem

q1 ⊆Λ,I q2 if and only if for every database C ∈ cchase(q1,S, I)

frozen head(q1) ∈ q2(C)

(frozen head(q1) is the same in every DB in the chase)

C is an extraction tree: q2 can be evaluated w/o access limitations

Warning

Not yet a strategy for deciding containment!

there may be an infinite number of databases in a chase

there is no bound on the size of databases in the chase

Query Optimization in the Deep Web

Containment

Main property of the crayfish-chase

Theorem

q1 ⊆Λ,I q2 if and only if for every database C ∈ cchase(q1,S, I)

frozen head(q1) ∈ q2(C)

(frozen head(q1) is the same in every DB in the chase)

C is an extraction tree: q2 can be evaluated w/o access limitations

Warning

Not yet a strategy for deciding containment!

there may be an infinite number of databases in a chase

there is no bound on the size of databases in the chase

Query Optimization in the Deep Web

Containment

Main property of the crayfish-chase

Theorem

q1 ⊆Λ,I q2 if and only if for every database C ∈ cchase(q1,S, I)

frozen head(q1) ∈ q2(C)

(frozen head(q1) is the same in every DB in the chase)

C is an extraction tree: q2 can be evaluated w/o access limitations

Warning

Not yet a strategy for deciding containment!

there may be an infinite number of databases in a chase

there is no bound on the size of databases in the chase

Query Optimization in the Deep Web

Containment

Decidability

Theorem

IF there exists a finite database C ∈ cchase(q1,S, I)
such that q1(C) 6⊆ q2(C),

THEN there exists another finite database
C ′ ∈ cchase(q1,S, I) such that

1 q1(C ′) 6⊆ q2(C ′), and
2 C ′ has maximum level δ = 2 · |S|+ |q2| − 3

Consequence

It is sufficient to check all databases in the chase up to a certain
number of levels

Query Optimization in the Deep Web

Containment

Decidability

Theorem

IF there exists a finite database C ∈ cchase(q1,S, I)
such that q1(C) 6⊆ q2(C),

THEN there exists another finite database
C ′ ∈ cchase(q1,S, I) such that

1 q1(C ′) 6⊆ q2(C ′), and
2 C ′ has maximum level δ = 2 · |S|+ |q2| − 3

Consequence

It is sufficient to check all databases in the chase up to a certain
number of levels

Query Optimization in the Deep Web

Containment

Idea of the proof: iterative subtree replacement

Take a counterexample C in
cchase(q1,S, I)

if C exceeds the level δ,
“shorten” it

C is “shortened” by subtree
replacement

at each replacement, we get
another counterexample

Query Optimization in the Deep Web

Containment

Idea of the proof: iterative subtree replacement

Take a counterexample C in
cchase(q1,S, I)

if C exceeds the level δ,
“shorten” it

C is “shortened” by subtree
replacement

at each replacement, we get
another counterexample

Query Optimization in the Deep Web

Containment

Idea of the proof: iterative subtree replacement

Take a counterexample C in
cchase(q1,S, I)

if C exceeds the level δ,
“shorten” it

C is “shortened” by subtree
replacement

at each replacement, we get
another counterexample

Query Optimization in the Deep Web

Containment

Idea of the proof: iterative subtree replacement

Take a counterexample C in
cchase(q1,S, I)

if C exceeds the level δ,
“shorten” it

C is “shortened” by subtree
replacement

at each replacement, we get
another counterexample

Query Optimization in the Deep Web

Containment

Complexity

Theorem

The complexity of checking containment of conjunctive queries
under access limitations is in co-NEXPTIME.

Proof sketch

1 guess C ∈ cchase(q1,S, I) of depth less than the sufficient
one; size O(W δ) (W : max. arity)

2 evaluate q2 over C : feasible in polynomial time in C and
det. exp. time in q2

3 if no counterexample to containment is found, then
containment holds (otherwise containment does not hold)

Query Optimization in the Deep Web

Containment

Complexity

Theorem

The complexity of checking containment of conjunctive queries
under access limitations is in co-NEXPTIME.

Proof sketch

1 guess C ∈ cchase(q1,S, I) of depth less than the sufficient
one; size O(W δ) (W : max. arity)

2 evaluate q2 over C : feasible in polynomial time in C and
det. exp. time in q2

3 if no counterexample to containment is found, then
containment holds (otherwise containment does not hold)

Query Optimization in the Deep Web

Dynamic optimization

Dynamic optimization

Dynamic optimization

Query Optimization in the Deep Web

Dynamic optimization

Using constraints for dynamic optimization

Constraints considered in [C., Calvanese, M. JUCS’09]

Functional dependencies (FD): s : A→ B

satisfied in D if, ∀t1, t2 ∈ sD , t1[A] = t2[A]⇒ t1[B] = t2[B]

Simple full-width inclusion dependencies (SFWID): s1 ⊆ s2

Satisfied in D if sD
1 ⊆ sD

2

Special case of inclusion dependencies
Relevant to model sources with several access patterns

Notation

A(s): set of all attributes of source s
I(s): set of input attributes of source s

Query Optimization in the Deep Web

Dynamic optimization

Using constraints for dynamic optimization

Constraints considered in [C., Calvanese, M. JUCS’09]

Functional dependencies (FD): s : A→ B

satisfied in D if, ∀t1, t2 ∈ sD , t1[A] = t2[A]⇒ t1[B] = t2[B]

Simple full-width inclusion dependencies (SFWID): s1 ⊆ s2

Satisfied in D if sD
1 ⊆ sD

2

Special case of inclusion dependencies
Relevant to model sources with several access patterns

Notation

A(s): set of all attributes of source s
I(s): set of input attributes of source s

Query Optimization in the Deep Web

Dynamic optimization

Using constraints for dynamic optimization

Idea for dynamic optimization

Store accesses and answer tuples in caches

Avoid accesses recognized as irrelevant thanks to the
constraints

The access may already conflict with the extracted tuples on
some FD that holds in the database
Or it may coincide with an access already made

Requires deciding implication of FDs in the presence of FDs
and SFWIDs

Implication is undecidable for FDs and general inclusion
dependencies [Chandra & Vardi, SIAM J.Comp.’85]

Query Optimization in the Deep Web

Dynamic optimization

Implication of FDs and SFWIDs

Let Γ be a set of FDs and SFWIDs

Results

Implication of SFWIDs from Γ only depends on SFWIDs

FDs have no impact on the implication of SFWIDs
The reflexivity and transitivity rules are sound and complete

Implication of a FD on a source s from Γ:

consider only sources si for which s ⊆ si is implied
assert on s all FDs holding on those sources si

decide implication of FDs using only the FDs on s (plus the
asserted ones) with Armstrong’s rules

Query Optimization in the Deep Web

Dynamic optimization

Implication of FDs and SFWIDs

Let Γ be a set of FDs and SFWIDs

Results

Implication of SFWIDs from Γ only depends on SFWIDs

FDs have no impact on the implication of SFWIDs
The reflexivity and transitivity rules are sound and complete

Implication of a FD on a source s from Γ:

consider only sources si for which s ⊆ si is implied
assert on s all FDs holding on those sources si

decide implication of FDs using only the FDs on s (plus the
asserted ones) with Armstrong’s rules

Query Optimization in the Deep Web

Dynamic optimization

Inference rules for SFWIDs and FDs

1 For every source s and all sets of attributes A,B ⊆ A(s),

if A ⊆ B, then s : B→ A.

2 For every source s and all sets of attributes A,B,C ⊆ A(s),

if s : A→ B, then s : AC→ BC.

3 For every source s and all sets of attributes A,B,C ⊆ A(s),

if s : A→ B and s : B→ C, then s : A→ C.

4 For every source s,

s ⊆ s.

5 For all sources s1, s2, s3,

if s1 ⊆ s2 and s2 ⊆ s3, then s1 ⊆ s3.

6 For all sources s1, s2 and sets of attr. A,B ⊆ A(s1) = A(s2),

if s1 ⊆ s2 and s2 : A→ B, then s1 : A→ B.

Query Optimization in the Deep Web

Dynamic optimization

Results on implication

Theorem

The inference rules 1− 6 are sound and complete for implication of
FDs and SFWIDs.

Theorem

Implication of SFWIDs and FDs can be decided in polynomial time.

Theorem

Finite and unrestricted implication are equivalent for SFWIDs and
FDs. (If there is a counterexample, then there is a finite one)

Query Optimization in the Deep Web

Dynamic optimization

Results on implication

Theorem

The inference rules 1− 6 are sound and complete for implication of
FDs and SFWIDs.

Theorem

Implication of SFWIDs and FDs can be decided in polynomial time.

Theorem

Finite and unrestricted implication are equivalent for SFWIDs and
FDs. (If there is a counterexample, then there is a finite one)

Query Optimization in the Deep Web

Dynamic optimization

Results on implication

Theorem

The inference rules 1− 6 are sound and complete for implication of
FDs and SFWIDs.

Theorem

Implication of SFWIDs and FDs can be decided in polynomial time.

Theorem

Finite and unrestricted implication are equivalent for SFWIDs and
FDs. (If there is a counterexample, then there is a finite one)

Query Optimization in the Deep Web

Dynamic optimization

Example of dynamic optimization

Static info

Schema: s iio(A,B,C)
FD: s : A→ B,C

Dynamic context

D is the database state
t is a tuple that has been extracted from sD such that t[A] = a
Suppose we have some value b for attribute B

Accessing sD with A = a,B = b is useless:

it can either provide t alone, if b = t[B]
or no tuple, if b 6= t[B]

because of the FD!

Query Optimization in the Deep Web

Dynamic optimization

Example of dynamic optimization

Static info

Schema: s iio(A,B,C)
FD: s : A→ B,C

Dynamic context

D is the database state
t is a tuple that has been extracted from sD such that t[A] = a
Suppose we have some value b for attribute B

Accessing sD with A = a,B = b is useless:

it can either provide t alone, if b = t[B]
or no tuple, if b 6= t[B]

because of the FD!

Query Optimization in the Deep Web

Dynamic optimization

Dynamic relevance

Access

An access (to a source s) is a selection query on s
A binding (for s) is a tuple of constants used for the input
attributes in an access to s

Dynamic relevance

Let T be a set of tuples for sources s1, . . . , sn.
Let Γ be a set of FDs and SFWIDs. An access is dynamically
relevant wrt. Γ and T if there is a database D |= Γ such that:

T is the set of tuples extracted from D with some accesses

the access extracts from D at least

one tuple not in T (tuple relevance), or
one constant not in T (binding relevance)

T represents the set of already extracted tuples

Query Optimization in the Deep Web

Dynamic optimization

Dynamic relevance and keys

Result

If a subset of the input attributes is a key, an access α is
dynamically tuple-relevant iff no already extracted tuple coincides
with α’s binding on the key attributes.

Let γ be the FD
s : K → A(s)

with K ⊆ I(s).

Let b be a binding for s and Ts a set of tuples that satisfies γ.

Accessing s using b is dynamically relevant wrt. γ and Ts iff
there exists no tuple t ∈ Ts such that b[K] = t[K].

Query Optimization in the Deep Web

Dynamic optimization

Dynamic relevance and FDs

Result

An access is not dynamically tuple-relevant if:

it has the same binding as some extracted tuple

it violates a FD together with some extracted tuple

Let γ be the FD
s : A → B

with A ⊆ I(s). Let b be a binding for s and Ts a set of tuples.
Then accessing s using b is dynamically relevant wrt γ and Ts iff

1 no tuple t ∈ Ts is such that t[I(s)] = b[I(s)], and

2 no tuple t ∈ Ts is such that t[A] = b[A] and
t[B ∩ I(s)] 6= b[B ∩ I(s)].

Query Optimization in the Deep Web

Dynamic optimization

Example of dynamic optimization using SFWIDs

Static info

s iio
1 (Code,Surname,City)

sooi
2 (Code, Surname,City)

SFWID: s1 ⊆ s2

FD: s2 : Code → Surname,City
Constants: Rome and Kyoto

Dynamic context

sD
1 = sD

2 =

Code Surname City

2 brown sidney

5 williams london

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

We can extract from sD
2

Code Surname City

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

Any access to sD
1 with the new

extracted constants is useless to
discover new constants

Query Optimization in the Deep Web

Dynamic optimization

Example of dynamic optimization using SFWIDs

Static info

s iio
1 (Code,Surname,City)

sooi
2 (Code, Surname,City)

SFWID: s1 ⊆ s2

FD: s2 : Code → Surname,City
Constants: Rome and Kyoto

Dynamic context

sD
1 = sD

2 =

Code Surname City

2 brown sidney

5 williams london

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

We can extract from sD
2

Code Surname City

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

Any access to sD
1 with the new

extracted constants is useless to
discover new constants

Query Optimization in the Deep Web

Dynamic optimization

Example of dynamic optimization using SFWIDs

Static info

s iio
1 (Code,Surname,City)

sooi
2 (Code, Surname,City)

SFWID: s1 ⊆ s2

FD: s2 : Code → Surname,City
Constants: Rome and Kyoto

Dynamic context

sD
1 = sD

2 =

Code Surname City

2 brown sidney

5 williams london

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

We can extract from sD
2

Code Surname City

7 yamakawa kyoto

1 wakita kyoto

9 marietti rome

Any access to sD
1 with the new

extracted constants is useless to
discover new constants

Query Optimization in the Deep Web

Dynamic optimization

Dynamic relevance and SFWIDs

Interaction of FDs and SFWIDs

Let Γ be the following set of dependencies:

s1 ⊆ s2

s2 : C→ D

with C ⊆ I(s1) and D ⊇ I(s2).
Let b be a binding for s1 and Ts2 a set of tuples.
Accessing s1 with b is dynamically binding-relevant with respect to
Γ and Ts2 iff there exists no tuple t ∈ Ts2 such that t[C] = b[C].

Query Optimization in the Deep Web

Dynamic optimization

Main result

Theorem

Let S be a schema of sources with fixed maximum arity. Let Γ be
a set of FDs and SFWIDs on sources in S.
Dynamic relevance of an access with respect to Γ can be checked
in polynomial time in the number of

dependencies in Γ

attributes in S
tuples already extracted from sources in S

Query Optimization in the Deep Web

Conclusions

Conclusion

Conclusion

Query Optimization in the Deep Web

Conclusions

Conclusion

Conclusion

Query Optimization in the Deep Web

Conclusions

Conclusions

Different approaches to the deep Web

Surfacing
Vertical integration
Large-scale on-the-fly data integration

Different techniques for query answering under access
limitations

finding the exact answer
finding best-effort approximations of the answer (maximally
contained or minimally containing)

Static optimization

exclusion of irrelevant sources
minimization of the accesses

Query Optimization in the Deep Web

Conclusions

Conclusions

Conjunctive query containment under access limitations

reduction to decidable (limitation-free) cases of containment
direct analysis with the crayfish-chase

Query rewriting with views under access limitations and
integrity constraints

reduction to query answering under integrity constraints

Dynamic optimization
excluding accesses deemed irrelevant during query answering

by dependencies on the schema (FDs and SFWIDs), and
knowledge of the already extracted tuples

Query Optimization in the Deep Web

Conclusions

Research directions

Taming the Web

Improving on-the-fly data extraction

HTML parsing
Linguistic aspects

Schema inference

Static optimization

More expressive queries than “natural” CQs and connection
queries

Sources with multiple access patterns

Query containment

Tight bounds, expressive query classes, constraints

Query Optimization in the Deep Web

Conclusions

Acknowledgments

Thanks to:

Diego Calvanese

Bertram Ludäscher

The Search Computing (SeCo) project

EPSRC “Schema mappings...” project

Query Optimization in the Deep Web

References

References

Andrea Cal̀ı, Diego Calvanese, and Davide Martinenghi.
Dynamic query optimization under access limitations and
dependencies.
Journal of Universal Computer Science, 15(21):33–62, 2009.

Andrea Cal̀ı and Davide Martinenghi.
Conjunctive Query Containment under Access Limitations.
In Proceedings of the Twentyseventh International Conference on
Conceptual Modeling (ER 2008), pages 326–340, 2008.

Andrea Cal̀ı and Davide Martinenghi.
Querying data under access limitations.
In Proceedings of the Twentyfourth IEEE International Conference
on Data Engineering (ICDE 2008), pages 50–59. IEEE Computer
Society Press, 2008.

Query Optimization in the Deep Web

References

References

Kevin Chen-Chuan Chang, Bin He and Zhen Zhang.
Toward Large Scale Integration: Building a MetaQuerier over
Databases on the Web.
CIDR 2005, pages 44–55.

Alin Deutsch, Bertram Ludäscher, and Alan Nash.
Rewriting queries using views with access patterns under integrity
constraints.
Theoretical Computer Science, 371(3):200–226, 2007.

Oliver M. Duschka and Alon Y. Levy.
Recursive plans for information gathering.
In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI’97), pages 778–784, 1997.

Query Optimization in the Deep Web

References

References

Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu.
Query optimization in the presence of limited access patterns.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 311–322, 1999.

Bin He, Mitesh Patel, Zhen Zhang and Kevin Chen-Chuan Chang.
Accessing the deep web.
Communications of the ACM, 50(5): 94–01, 2007.

Chen Li.
Computing complete answers to queries in the presence of limited
access patterns.
Very Large Database Journal, 12(3):211–227, 2003.

Query Optimization in the Deep Web

References

References

Chen Li and Edward Chang.
Answering queries with useful bindings.
ACM Transactions on Database Systems, 26(3):313–343, 2001.

Bertram Ludäscher and Alan Nash.
Processing union of conjunctive queries with negation under
limited access patterns.
In Proceedings of the Ninth International Conference on Extending
Database Technology (EDBT 2004), pages 422–440, 2004.

Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex
Rasmussen and Alon Y. Halevy.
Google’s Deep Web crawl.
In PVLDB 1(2):1241–1252, 2008.

Query Optimization in the Deep Web

References

References

Todd D. Millstein, Alon Y. Halevy, and Marc Friedman.
Query containment for data integration systems.
Journal of Computer and System Sciences, 66(1):20–39, 2003.

Alan Nash and Bertram Ludäscher.
Processing first-order queries under limited access patterns.
In Proceedings of the Twentythird ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems
(PODS 2004), pages 307–318, 2004.

Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman.
Answering queries using templates with binding patterns.
In Proceedings of the Fourteenth ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS’95), 1995.

Query Optimization in the Deep Web

References

References

Guizhen Yang, Michael Kifer, and Vinay K. Chaudhri.
Efficiently ordering subgoals with access constraints.
In Proceedings of the Twentyfifth ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems
(PODS 2006), pages 22–22, 2006.

Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Jeffrey D.
Ullman.
Computing capabilities of mediators.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 443–454, 1999.

	Introduction
	Surfacing
	Query answering under access limitations
	Optimization
	Views and constraints
	Containment
	Dynamic optimization
	Conclusions
	References

