
Dictionaries and Hash Tables

Nicolò Felicioni1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

nicolo . felicioni @ polimi . it

May 25, 2021

1Based on Nicholas Mainardi’s material.

Dictionaries

What is a dictionary?

A dictionary is a collection of data which are accessible
through a key in O(1)

The key is usually an integer, which may be associated to
arbitrary data, called satellite data

Note that every raw data can be converted to an integer and
used as a key (e.g. an ASCII string can be encoded as a base
128 integer)

The key is generally unique

Naive implementation

Suppose the keys are integers in the range [0, . . . ,M − 1]

Then, we can implement it with a simple array of size M

This solution is known as direct-address table

Integer Sets and Direct-Address Tables

Dictionaries as Sets

Sets are usually represented with a dictionary

Indeed, elements of a set are unique, thus a unique key can be
used to identify them

In case the elements of a set are integers, the element is the
key itself, no satellite data are necessary

Maximum on a Set of Integers

We want to find the maximum of a set of integers ranging
from [0, . . . ,M − 1]

Idea: with a direct-address table implementation, the index of
the array is equal to the element of the set, thus the
maximum is simply the last not empty element of the array

We can easily look for it starting from M − 1 position

Integer Sets and Direct-Address Tables

Can we get a more concise representation of a set of integers?

Reducing Spatial Complexity of Sets of Integers

Consider a bit vector, which is an array where the single
element is a bit

Can we represent a set of integers with a bit vector?

We can use the bit vector as a bit mask! Integer k belongs to
the set if and only if the k − th bit is 1!

In this way, we represent a set with m bits instead of m ∗ w ,
with w being the size of a word in the memory

We can implement the bit vector as an array D with dmw e
cells, each having w bits

Then the i − th element (e.g. i − th bit) can be accessed by
(D[b i

w c] >> (i%w))&1

Algorithms for Direct-Address Tables

Problem

Suppose to implement a dictionary with a direct-address table T ,
with the size of the table being huge. The table may contain
garbage in its empty records, however we cannot initialize them to
constant values since the table is too big. Is it possible to design a
scheme which manages to perform basic operations
SEARCH, INSERT and DELETE in O(1) on this huge table,
with initialization cost being constant too?

↪→ It is possible to employ an additional array S , having the same
size of the table T , to determine if a record is empty or not

↪→ The variable size stores the number of entries employed in S

↪→ Problem: How to efficiently (O(1)) search in this additional
array if an element exists in the dictionary?

Algorithms for Direct-Address Tables

A Possible Solution

Idea: We do not need to store the key in the record of the
table, thus we can store the index of the additional array
which contains information about this record

How do we recognize an empty cell? It may be not sufficient
to see that the index is a valid one (i.e. it is less than size) for
the additional array S

↪→ Indeed, a garbage value in a record may be a valid index in S

Idea: the difference between a garbage access to S and a
non-empty one is that in the latter case we know we have
already accessed this cell from T [k]

Thus, when we fill the additional array upon insertion of a key
k, we can store k in the associated cell

Following this strategy, we know that ∀i ≤ size(T [S [i]] = i)

Algorithms for Direct-Address Table

Search, Insertion and Deletions

Exploiting the previous property, an element with key k is in
the dictionary, if and only if T [k] ≤ size ∧ S [T [k]] = k .
Indeed, for a key k ′ not in the dictionary:

Either T [k ′] > size
Or T [k ′] ≤ size, but then S [T [k ′]] has already been initialized
with a key different from k ′

For insertion, it is sufficient to verify that the element k is not
present and, if this the case, perform these operations:

size ← size + 1
S [size]← k
T [k]← size

In the first insertion, we know for sure that k is empty, thus
we do not need to search for it ⇒ Initialization phase is O(1)

Deletions

What about deletions? We can simply break the relations
S [T [k]] = k by writing a k ′ 6= k , but in this way we introduce
a ”hole” in the additional array!

↪→ k ′ must be greater than any other key in the dictionary,
otherwise we may insert k ′ by chance if T [k ′] = T [k]

Are holes a problem? Yes!

↪→ Sooner or later, holes becomes the only free cells of S to insert
new elements ⇒ linear search time to find the ”holes”!

How to avoid ”holes”? Shift all the cells of S has linear cost!

Idea: we do not care about preserving the order of insertion of
the keys in the additional array!

Thus, we can replace the element to be erased with the last
element being inserted, which is the one in S [size]:

T [S [size]]← T [k]
S [T [k]]← S [size]
size ← size − 1

Hash Tables

Direct-address tables are feasible only when the range of the
keys to be stored is not too big

We can use hash functions to map a wide range of keys to a
fixed one, which is used as a direct-address table

The new key is h(k), with H : U 7→ [0, . . . ,M − 1], with U
being the universal set of keys, generally N

Collisions

Unless |U| = M, there necessarily exists
k1, k2(h(k1) = h(k2) ∧ k1 6= k2)

In this case, we say that there is a collision between k1 and k2

To solve such collisions, there are different methods, let’s look
at them through an example

Hash Tables: Example

M = 11

K = [35, 83, 57, 26, 15, 63, 97, 46]

h(k) = k mod M

Hash Values

h(35) = 2

h(83) = 6

h(57) = 2

h(26) = 4

h(15) = 4

h(63) = 8

h(97) = 9

h(46) = 2

Hash Tables: Collisions

Chaining

Each record of the table has a list of elements mapped to that
record by the hash function h:

0

1

2

3

4

5

6

7

8

9

10

35

26

83

63

97

57

15

46

Hash Tables: Open Addressing

With open addressing, if the record h(k) is full, then an
inspection sequence is used to find a free record to store k

The hash function is replaced by
H : U × [0, . . . ,M − 1] 7→ [0, . . . ,M − 1], fulfilling
∀i , j ∈ [0, . . . ,M − 1](H(k , i) = H(k , j)⇒ i = j), that is the
sequence must be a permutation of the records, to allow the
key being stored in a free record eventually

To store k, we compute H(k, i), starting from i = 0, until we
find a free record

Linear Probing

In linear probing H(k , i) = (h(k) + i) mod 11

0 1 2 3 4 5 6 7 8 9 10

35 57 26 15 83 46 63 97

Hash Tables: Open Addressing

With linear probing, the keys are clustered around the records
which have experienced collisions

We should have a scheme placing elements not only in the
closest records to h(k)

Quadratic Probing

H(k , i) = (h(k) + c1 ∗ i + c2 ∗ i2) mod m, c2 6= 0

For instance, c1 = 0, c2 = 1⇒ H(K , i) = h(k) + i2 mod 11

0 1 2 3 4 5 6 7 8 9 10

46 35 57 26 15 83 63 97

However, with such a choice for c1, c2, the inspection sequence is
not a permutation ⇒ not all the records are visited! (e.g
H(k , 4) = H(k , 7), since 42 = 72 = 5 mod 11)

Hash Tables: Open Addressing

How to choose feasible values for c1, c2?

Unfortunately, if m is prime, then c2 6= 0⇒ the inspection
sequence is not a permutation

Conversely, for m = pk , where p is prime, choosing c2 among
multiples of p and c1 among non-multiples of p makes the
inspection sequence a permutation (e.g. p = 7,m = 49,
c1 = 10, c2 = 35)

Quadratic Probing: Issues

There is no longer clustering, but keys experiencing a collision
always have the same inspection sequence, which may result
in longer times to find a free record

We need to get an inspection sequence which depends on the
key itself!

Hash Tables: Open Addressing

Double Hashing

Employ a second hash function, h2(k) = 1 + (k
mod (M − 1)) = 1 + k mod 10

Now, H(k , i) = (h(k) + i · h2(k)) mod 11

Hash Values:
k 35 83 57 26 15 63 97 46

h2(k) 6 4 8 7 6 4 8 7

Hash Table:

0 1 2 3 4 5 6 7 8 9 10

46 35 26 15 83 63 97 57

Hash Tables: In-Place Chaining

Problem

We want to implement an hash table where collisions are solved by
chaining. However, we do not want to allocate external memory
for the elements, but we want to store them in the table itself in
the free slots. Suppose we can use an hash table whose slots can
store a flag and either an element followed by a pointer, or two
pointers. We can use a list to store all the free slots. All the
operations on the hash table and on the list must be O(1)

Idea: we use a single slot to store the element and the pointer
to the slot storing the next element in the chain

The chain is finished when such a pointer is NIL

The list storing free slots can be used as a stack ⇒ PUSH
and POP in O(1)

How to perform INSERT,DELETE, SEARCH in O(1)?

Hash Tables: In-Place Chaining

SEARCH is trivial: search key k in the chain starting in slot h(k)

INSERT - 1

The boolean flag is used to understand if the slot l = h(k) is
empty or not

If l is empty, we can set the flag to true, store the element
and set the pointer to NIL

NB: we don’t erase l from free-slots list to save O(n) look-up
Each time we pop a slot from the list, we must check that the
slot is not full, popping the next slot in the list otherwise

If l is full (i.e., it stores an element e), there are 2 cases:
1 e is the head of a chain of elements ⇒ e is in the ”right” slot
2 e is part of a chain of elements starting in another slot ⇒ e is

in the ”wrong” slot

How to distinguish between them? From the hash of the
element being stored in l!

Hash Tables: In-Place Chaining

INSERT - 2

1 If h(e.key) = l , then it is case 1, thus we need to insert e at
the head of this chain (as it is more efficient)

That is, we pop the first element of the free slots list, we copy
the element being stored in l , then we overwrite l with e and
set the pointer to the slot with the copied element

2 Conversely, if h(e.key) 6= l , then we need to start a new chain
for slot l , moving the stored element somewhere else

That is, we pop the first element of the free slots list, with
index new , we copy the element being stored in l , and then we
insert e in l as if it was empty
Problem: the element initially stored in l was part of another
chain, thus its predecessor in this chain still points to l ,
although there is no longer an element of this chain in l!
We search, in the chain starting at slot h(e.key), the element
which points to l , and then we replace this pointer with new

Hash Tables: In-Place Chaining

DELETE

Given the key k of the element to be erased, we search this
element in the hash table

Denoting as l the slot where the element is found, there are 2
possible cases:

1 h(k) = l , i.e., the element is the head of a chain ⇒ Replace
this slot with the content of the pointed one. Then, erase the
old second element (whose index must be saved before
overwriting slot l) and push its slot to the free slots stack

2 h(k) 6= l , i.e., the element is in the middle of a chain ⇒ Save
the pointer to the next element, erase the content of this slot
and push it to the free slots stack.

↪→ As for INSERT, we move a slot being in the middle of a
chain, thus the pointer of its predecessor must be updated
with the address of its successor

