
Graphs and Data Structure Design

Nicolò Felicioni1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

nicolo . felicioni @ polimi . it

June 3, 2021

1Based on Nicholas Mainardi’s material.



Graphs

Definition

A graph is a pair of sets V ,E , where:

V is the set of vertexes

E is the set of edges, which are connections among vertexes

Formally, E ⊆ V 2, since each edge is a pair of vertexes

If the order of pairs in an edge is relevant, the graph is called
directed

Trees are a particular, constrained type of graphs: acyclic
undirected connected graphs
Graphs are generally really useful to model a wide variety of
real world situations

In particular, edges usually are easily mapped to relationships
There are no constraints on the topology of the graph,
differently from trees (indeed suitable for hierarchical
relationships)



Graphs

Memory Representation

There are 2 main strategies to represent a graph in memory:
1 Adjacency lists: the graph is an array of vertexes, where each

one has a pointer to a list of vertexes which are connected to
it through an edge

2 Adjacency matrix: the graph is a V × V matrix A, where
A[i ][j ] = 1 ⇐⇒ (i , j) ∈ E

List is more compact: requires Θ(V + E )

Matrix is always Θ(V 2)

Therefore, if the graph is highly connected, that is there are a
lot of edges, there is no big difference between the 2
representations, thus matrix may be better because some
operations are faster

Instead, a list is way more compact if the graph has few edges



Graphs

Graph Operations Recap

BFS: Breadth First Search ⇒ O(V + E )

DFS: Depth First Search ⇒ O(V + E )

Finding shortest path in a weighted graph : O(VE ) with
Bellman-Ford, O(V log(V ) + E ) with Dijkstra (applicable only
if all the weights are non-negative)

Topological Sorting on direct acyclic graphs: ⇒ O(V + E )



Minimum Path with Prohibited Nodes

Problem

Given a graph G = (V ,E ), 2 nodes s, t ∈ V , and a set of
prohibited nodes P ⊆ V , design an algorithm able to find, if exists,
the minimum path between s and t which does not include any
prohibited node

Looking at the problem from another perspective: it is
equivalent to searching t starting from s, without including
prohibited nodes in the search path

Therefore, we may use a search algorithm which is modified to
avoid prohibited nodes

In particular, nodes in P are marked with a different color (e.g.
black, which is used for nodes being already visited in search
algorithms) which allows to avoid considering these nodes



Minimum Path with Prohibited Nodes

Which Search Algorithm?

Recall that, if the path exists, we have to return the minimum

BFS try first all the paths with length 1, then paths with
length 2 and so on

Therefore, if we use BFS, the first solution found is already
the minimum path

Indeed, if there had been a shorter path, it would have been
already found by the algorithm

Instead, with DFS we may find a longer path as the first one

Time complexity?

BFS code requires only slight modifications, actually just
black coloring nodes in P ⇒ O(P) ∈ O(V )

Therefore, the time complexity is the same as BFS: O(V + E )



Universal Sinks

Problem

Given a directed graph G = (V ,E ), a sink s is a node with no
outgoing edges, that is @(i , j) ∈ E (i = s). A sink is called universal
if it is connected to all other nodes. Consider the problem of
searching a universal sink in a graph G . Choose the memory
representation which is best suitable to efficiently solve this
problem, and describe an algorithm which searches a universal sink
in G .



Universal Sinks

Choosing Memory Representation

Let’s focus on the verification for a candidate universal sink

To verify it is a sink, we have to look at outgoing edges:

↪→ With a list, we just need to verify that the list of adjacent
nodes is empty ⇒ O(1)

↪→ With a matrix, we need to verify that all elements are 0 in the
row corresponding to the candidate node ⇒ O(V )

To verify it is universal, we have to look at ingoing edges:

↪→ With a list, we need to search for the candidate sink in all the
adjacent lists, for each node ⇒ O(V + E )

↪→ With a matrix, we need to verify that all elements are 1 in the
column corresponding to the candidate node, except for the
element on the diagonal (which means there are no self-loops
on the candidate node) ⇒ O(V )

Thus, verification costs: O(V ) for matrix, O(V + E ) for list



Universal Sinks

Algorithm Design

Given the graph G is better represented with an adjacency
matrix, we need to find a fast algorithm to verify existence of
universal sinks in the graph

Naive idea: verifying each node!

↪→ Each verification costs O(V )
↪→ O(V ) verifications a most
↪→ This simple solution has O(V 2) time complexity

Let’s see what we can infer by looking at a generic element of
the adjacency matrix A[i ][j ]

1 If A[i ][j ] = 1, we know that the node associated to row i is not
a sink

2 Conversely, if A[i ][j ] = 0, we know that the node associated to
column j cannot be a universal sink (except for the case i = j)

Thus, by looking at a single cell we can discard 1 node



Universal Sinks

Algorithm Design

Now, we need to define a policy to visit cells in matrix A

Suppose we start from the cell A[1][2] (i = j = 1 is a corner
case which will be handled later)

If A[1][2] = 1, then we can discard node 1, thus we can
consider A[2][2]

Conversely, we can move to A[1][3], discarding node 2

With such a policy, calling m = max(i , j), it means that we
have already discarded all nodes < m, except for the node i or
j which is different from m

Therefore, it is legitimate updating an index i to m + 1

In this way, we avoid considering nodes already being
discarded



Universal Sinks

Algorithm Design

The corner case i = j needs to be handled: if A[i ][j ] = 1, we
need to discard i , moving to the next element in the diagonal.
Instead, default behavior is ok if A[i ][j ] = 0, since we retain i
as a candidate universal sink, but we consider j + 1 element
for further analysis

Since now we have just handled corner case i = j , we can also
start with A[1][1] our visit

Summing up, after V comparison, m + 1 > V , and thus the
only node not being discarded is the only one which can still
be a universal sink

We can test it in O(V ) time

Therefore, we need V comparisons to find the candidate
universal sink, and O(V ) time to verify it: ⇒ Θ(V ) time



Universal Sinks

Pseudocode

FIND-UNIVERSAL-SINK(A)

1 i ← j ← max ← 1
2 while max ≤ A.n
3 do max ← max + 1
4 if A[i ][j] = 0
5 then j ← max
6 sink ← i
7 else if i = j
8 then i ← j ← sink ← max � Corner case for A[i ][i ] = 1
9 else i ← max

10 sink ← j
11 if max = sink � All nodes already discarded since sink = max = A.n + 1
12 then return NIL
13 for j ← 1 to A.n � Verify if candidate sink is a sink
14 do if A[sink][j] = 1
15 then return NIL
16 for i ← 1 to A.n � Verify if candidate sink is a universal sink
17 do if A[i ][sink] = 0 ∧ i 6= sink
18 then return NIL
19 return sink



Colored (Sub)Graph

Problem

Consider an undirected graph G where the nodes may have 2
colors, yellow and red. We want to split the graph in 2 connected
subgraphs, one with all and only yellow nodes, the other one with
all and only red nodes

Thinking About a Solution

Idea: the graph is already split, we have just to check that all
nodes are connected

In other words, we have already the 2 subgraphs, we have to
visit them to verify all the nodes are reachable

Thus, we can employ a slightly modified graph visit algorithm
VISIT-COLOR(G , color)



Colored (Sub)Graph

Algorithm Design

In particular, it visits only nodes of one color, replacing this
color with another one to mark the nodes as visited

Note that if nodes with a different color are met, they are
ignored

Therefore, if there is a yellow node which is reachable just by
a red one, VISIT-COLOR(G , yellow) will not visit it

The algorithm works as follows:
1 Call VISIT-COLOR(G , yellow)⇒ O(V + E )
2 Call VISIT-COLOR(G , red)⇒ O(V + E )
3 Check if there are still yellow or red nodes, implying at least

one of the subgraphs is unconnected ⇒ O(V )

Time complexity is dominated by VISIT-COLOR algorithm
⇒ O(V + E )



Company Employees

Problem

A company has a hierarchical organization for its employees. In
particular, each one has a supervisor (except for the CEO) and
may have one or more person he/she is responsible for. The last
level of the hierarchy is represented by workers, which do not have
any people they are responsible for. The CEO wants to verify if
this hierarchy is not too long, which means he wants to ensure that
the levels between him and any worker are less than 1

20 of the total
number of employees of the company. Propose a solution to the
CEO problem and get hired by this company

Data Structure

We need to represent hierarchical relationships

A tree seems the best data structure



Company Employees

Algorithm Design

However, it is not a binary tree, neither a search one

The children pointers are all stored in an array in the parent
node

Let’s analyze what problem we need to solve on a tree

The maximum levels between the CEO and any worker are
equal to the height of the tree h

The total number of employees are the nodes of the tree n

Thus, we need to verify that h
n ≤

1
20

We can do it with a visit algorithm which computes the max
depth and count the nodes



Company Employees

Pseudocode

CountNodesMaxDepth(node)

1 max ← 0
2 count ← 1
3 for i ← 1 to node.children.length
4 do (c ,m)← CountNodesMaxDepth(node.children[i ])
5 count ← count + c
6 if m > max
7 then max ← m
8 return (count,max + 1)

(n, h)← CountNodesMaxDepth(Ceo), where Ceo is the
root of the tree
Complexity: O(1) processing on each node, and every node is
visited once ⇒ O(n)



Boxers

Problem

There is a set of n boxers, where some of them are rivals. Each
boxer may have an arbitrary number of rivals. Design a data
structure and an algorithm able to partition the set in 2 teams,
with the constraint of no rival boxers in the same team

Choosing the Data Structure

We need to represent relationships between a set of elements

These relationships are not hierarchical

A graph is the perfect data structure

Which type of graph?

The rivalry is a symmetric relationship: undirected graph



Boxers

Algorithm Design

The constraint on the teams basically means that 2 adjacent
nodes cannot be in the same team

Therefore, if a node is already in team A, all its neighbors
must be in team B

Then, all the neighbors of each neighbors must be in team A,
and so on

Basically, if we start from a node v placing it in team A, all
nodes at distance 1 are placed in team B, all nodes at
distance 2 in team A, and so on

Moreover, for each node being assigned, we have to check
that no one of its neighbors is in the same team



Boxers

Algorithm Design

Therefore, we need to visit the graph, assign the node to the
correct team depending on its distance from the source, and
check all the neighbors are in a different team

Which visit algorithm? Teams are assigned depending on the
distance, thus Breadth First Search seems a viable solution

We can introduce 2 new colors to assign elements to one
team or another

The problem is thus equivalent to color the nodes of the
graph such that there are no adjacent nodes with the same
color ⇒ Graph 2 Coloring Problem

Which node do we start with? Does it affect the coloring of
the graph?



Boxers

Graph 2 Coloring

Suppose that, by start coloring from node v , we do not find a
suitable coloring, even if this coloring exists

Fact: for each node, all the nodes at odd distance have
different colors, while all the nodes at even distance have the
same color

If we have not found a coloring, it means that there are 2
adjacent nodes x , y with the same color

But if they share the same color, then their distances from v
are either both even or both odd

However, if there exists a coloring, then these nodes must
have different colors in such a coloring. There are 2 cases:

1 Their distances from v are odd
2 Their distances from v are even



Boxers

Graph 2 Coloring - Case 1

Since the distance between x and v is odd, then their colors must
be different, and the same holds for y . Therefore,
x .col 6= v .col ∧ y .col 6= v .col ⇒ x .col = y .col ⇒ absurd

Graph 2 Coloring - Case 2

Since the distance between x and v is even, then their colors must
be the same, and the same holds for y . Therefore,
x .col = v .col ∧ y .col = v .col ⇒ x .col = y .col ⇒ absurd

In conclusion, if we do not find a suitable coloring starting
from a node v , then this coloring does not exist

Therefore, the choice of the node v as a starting point for
BFS does not matter

Complexity: BFS with some additional checks ⇒ O(V + E )



Real Numbers

Problem

We want to design a data structure to represent a set of real
numbers. We need to perform these 3 operations:

1 INSERT(S , r): check if the value is in the set, if not r is
added to S

2 DELETE(S , r): check if the value is in the set and delete it

3 CLOSER-TO-AVG(S): find the element in S which is
closer to the average of all elements of S

Design the data structure which minimizes the complexity of these
3 operations

The average of the set can be easily updated during INSERT
and DELETE in O(1) with a couple of operations

Thus, we can store this average in a variable



Real Numbers

Data Structure

The usual structure to represent a set is an hash table

There are nice hash functions for real numbers which may be
employed

However, hash tables are suitable for SEARCH, INSERT
and DELETE. What about aggregate functions like
CLOSER-TO-AVG?

We would like to avoid iterating over the whole table to
analyze all elements in the set

We may use 2 pointers in each record of the table which
points to the previous and next elements in the table

Sort of doubly linked list with O(1) access to each element

To compute CLOSER-TO-AVG, we can find the closest
element by visiting all of them using the pointers ⇒ Θ(n)



Real Numbers

Improving Hash Tables?

Is Θ(n) the best we can obtain for CLOSER-TO-AVG?

If the set is sorted, we can surely stop as soon as the elements
become greater than the average and find the closest one

Which data structure allows to benefit from such a structured
set? A BST!

In a BST, if we search for the average, the closest value will
surely be visited in the search path. Indeed:

If the average is in the set, we will find it with SEARCH
If it is not, then we will reach the place where the node with
the average value should be inserted. Then,
CLOSER-TO-AVG can be computed as the closer between
the predecessor and the successor of this average node. By
definition, since this node has no children, its predecessor and
its successor will be in the search path, and thus they have
already been visited (and hence saved)



Real Numbers

Pseudocode

CLOSER-TO-AVG(S)

1 node ← S .root
2 pred ← succ ← NIL
3 while node 6= NIL
4 do if S .avg = node.key
5 then return node
6 if S .avg < node.key
7 then succ ← node
8 node ← node.left
9 else pred ← node

10 node ← node.right
11 if pred = NIL
12 then return succ
13 if succ = NIL
14 then return pred
15 if S .avg − pred .key > succ.key − S .avg
16 then return succ
17 return pred



Real Numbers

Time Complexities Comparison:

Algorithm Doubly Linked Hash Table Balanced BST

INSERT O(1) O(log(n))
DELETE O(1) O(log(n))

CLOSER-TO-AVG O(n) O(log(n))

BST is preferable since the complexity is at most O(log(n)) for
each operation, while the hast table incurs O(n) overhead for
CLOSER-TO-AVG, despite being faster for INSERT and

DELETE


