
Binary Search Trees

Nicolò Felicioni1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

nicolo . felicioni @ polimi . it

June 1, 2021

1Based on Nicholas Mainardi’s material, enriched with few additional
examples.

Binary Trees

Binary Tree: Definition

A tree is a pair of sets (nodes V and edges E) with a particular
structure. In particular, there are no cycles and edges are directed,
defining a parent relationship. That is,
∀i , j ∈ V ((i , j) ∈ E ⇒ i is parent of j). Each tree has a single root
node, which is the only one with no parents, and leaves, which are
nodes with no children. A tree is n-ary if its nodes can have at
most n children. Therefore, in a binary tree nodes can have at
most 2 children

Trees are useful to model different real world situations,
especially hierarchical ones

Binary Search Trees (BST) are perfectly suitable for searching
operations

Binary Search Trees

Definition

In a Binary Search Tree (BST), for any node with key k , all nodes
in the subtree rooted in its left child have a key ≤ k, while all
nodes in the subtree rooted in its right child have a key ≥ k .

Operations

SEARCH, INSERT,DELETE

MIN = leftmost leave, MAX = rightmost leave

These operations are O(h), where h is the height of the tree:
typically log(n) if the tree is balanced

All visit operations are O(n):

↪→ IN-ORDER-VISIT: nodes are visited in increasing order
↪→ PRE-ORDER-VISIT: parents are visited before children
↪→ POST-ORDER-VISIT: parents are visited after children

Create a balanced BST

Problem

Given an array A, create a balanced BST with all the keys
contained in A

Idea for the Solution - 1

Maybe if we sort A (O(n log(n))) the problem is simpler

But we can not insert the elements of A in an empty BST
after the sorting, otherwise we will end up with a completely
unbalanced tree!

We should insert the central element first

Then, apply the same policy to the right sub-array and the
left sub-array

Create a balanced BST

Problem

Given an array A, create a balanced BST with all the keys
contained in A

Idea for the Solution - 1 - Complexity

The sorting has a worst-case complexity of Θ(n log(n)))

For each element i + 1, we must insert the element in a BST
with i elements already present

T (n) = Θ(n log(n)) +
n∑

i=1

log(i) =

Θ(n log(n)) + log(n!) = Θ(n log(n))

(We used the Stirling approximation)

Create a balanced BST

Problem

Given an array A, create a balanced BST with all the keys
contained in A

Idea for the Solution - 2

First, sort the array

Then, create a node with a key equals to the central element
of the array

At this point, recursively repeat the procedure for the left
sub-array, and make the node returned by the recursive call be
the left child of the current node

Apply recursively the procedure also to the right sub-array,
and make the node returned by the recursive call be the right
child of the current node

Create a balanced BST

Problem

Given an array A, create a balanced BST with all the keys
contained in A

Idea for the Solution - 2 - Pseudocode

Build(A, l , r)

1 if l > r
2 then return NIL
3 mid ← (l + r)/2
4 T ← BST ()
5 T .key ← A[mid]
6 T .left ← Build(A, l ,mid − 1)
7 T .right ← Build(A,mid + 1, r)
8 return T

Create a balanced BST

Problem

Given an array A, create a balanced BST with all the keys
contained in A

Idea for the Solution - 2 - Complexity

In order to solve the problem we will call Build(A, 1,A.len).
In this case, the complexity of Build will be:

Tbuild(n) = 2T (n/2) + Θ(1)

Hence, according to the Master’s Theorem, Tbuild(n) = Θ(n).
The total complexity (including the sorting phase) will be:

T (n) = Tsort(n) + Tbuild(n) = Θ(n log(n)) + Θ(n) = Θ(n log(n))

Minimum Common Ancestor

Problem

A node is a common ancestor of 2 nodes if it is an ancestor for
both of them. The minimum common ancestor is the closest to the
nodes, that is the one furthest from the root of the tree. Suppose
there is a BST where each node has a distinct key. How to find the
minimum common ancestor of two nodes with keys k1, k2?

Idea for the Solution

Where is the minimum common ancestor w.r.t. the 2 nodes?

If one of the 2 nodes is an ancestor of the other one, then the
former is surely the minimum common ancestor

In the other case, it means that the nodes are in different
branches of the tree

Therefore, the minimum common ancestor is the node where
the 2 different branches fork

Minimum Common Ancestor

Algorithm Design

Can we identify the forking point?

For nodes before the forking point, either both the nodes are
in the left subtree or both the nodes are in the right subtree

Therefore, their keys are either both smaller or both larger
than the 2 nodes

The forking node is the first one having its key in between the
keys of the 2 nodes, since one node is in the left subtree and
the other node is in the right subtree

Note that this property is true also in the case where one
node is an ancestor of the other, since the key of the
minimum common ancestor is equal to one of the 2 nodes

Thus, we can look for such a node starting from the root of
the tree

Minimum Common Ancestor

Algorithm Design

We need to choose the correct branches in order to get to the
minimum common ancestor

In particular, we choose the left subtree if the keys of both
nodes are smaller than the current one, and vice versa

Minimum Common Ancestor(T , k1, k2)

1 mca← T .root
2 while mca 6= NIL
3 do if mca.key > k1 ∧mca.key > k2
4 then mca← mca.left
5 else if mca.key < k1 ∧mca.key < k2
6 then mca← mca.right
7 else return mca

Number of Heirs

Problem

Design an algorithm which computes the sum of the number of
heirs for each node of the tree

Heirs are the opposite of ancestors

Each node is heir of all its ancestors, thus the sum will be
larger than the number of nodes of the tree

5

3

1 4

7

6 8

h = 7

h = 3

h = 1 h = 1

h = 3

h = 1 h = 1

In this example, the number of heirs of each node is written on the
right. The sum of them is 17

Number of Heirs

Algorithm Design

First of all, we need to count the number of heirs of a given
node

This is equivalent to count the number of nodes of the
subtree rooted at the given node

Recursive Method to do it?

CountElements(node)

1 s1 ← s2 ← 0
2 if node.left 6= NIL
3 then s1 ← CountElements(node.left)
4 if node.right 6= NIL
5 then s2 ← CountElements(node.right)
6 return s1 + s2 + 1

Number of Heirs

Algorithm Design

From this algorithm, we can get the sum of all heirs:

SumHeirs(node)

1 acc1 ← acc2 ← 0
2 if node.left 6= NIL
3 then acc1 ← SumHeirs(node.left)
4 if node.right 6= NIL
5 then acc2 ← SumHeirs(node.right)
6 return acc1 + acc2 + CountElements(node)

For each node, we count its heirs, leveraging
CountElements, and we add it to the accumulator storing
the sum of all heirs, which is recursively computed

Number of Heirs

Complexity

Complexity of CountElements: we visit each node once,
performing only additions ⇒ O(m), with m being the size of
the tree rooted in node

Complexity of SumHeirs: recursive algorithm:

the non recursive part is mainly the execution of
CountElements, which has linear complexity
the number of recursive calls and the size of the subproblem
depend on the structure of the tree
The best case is a perfectly balanced tree, thus the recurrence
equation is T (n) = 2T (n

2) + O(n)⇒ T (n) = O(n log(n))
The worst case is a completely unbalanced tree, thus the
recurrence equation is
T (n) = T (n − 1) + O(n)⇒ T (n) = O(n2)

Number of Heirs

Algorithm Design

Can we do better? It seems we are ”wasting” recursion calls

Indeed, we use a recursive algorithm which calls at each
iteration another recursive procedure which has actually the
same recursion scheme

Maybe we can merge these 2 routines employing a single
recursion tree

We would need to compute the sum while counting the nodes

We employ an accumulator variable, returning 2 values from
the recursive calls

We can do it in pseudocode since we can always do it in a
programming language (return a pointer to a structure with 2
integers)

Number of Heirs

Pseudocode

SumHeirs(node)

1 acc1 ← acc2 ← 0
2 s1 ← s2 ← 0
3 if node.left 6= NIL
4 then (s1, acc2)← SumHeirs(node.left)
5 if node.right 6= NIL
6 then (s2, acc2)← SumHeirs(node.right)
7 s ← s1 + s2 + 1
8 return (s, acc1 + acc2 + s)

Time complexity is O(n), since we visit once all the nodes of the
tree performing only additions

An Interesting Property

We are willing to understand if the following property holds for a
binary search tree:

Definition

Consider a leaf node with key k . The search path for key k is the
sequence of nodes visited during a search for k. Define A the set
of nodes on the left of the search path for k, B the set of nodes
belonging to the search path, and C the set of nodes on the right
of the search path. In particular, a node is on the left (right) of the
search path if it belongs to a left (right) subtree which has been
discarded during search for key k . Is it true that
∀a ∈ A, b ∈ B, c ∈ C (a ≤ b ≤ c)?

An Interesting Property

Intuitively, this property seems to hold!

If a node c is on the right of a search path, it means that at
some point in the tree we chose the left subtree, thus all
values in this subtree are smaller than c . . .

However, this right subtree may be in the left subtree of
another node in B, thus c ≤ b!

Counterexample

7

5

2

1 3

6

For k = 3, the search path is
7, 5, 2, 3

Consider a = 1, b = 7, c = 6

In this example, it holds a ≤ b, but
c < b!

Thus, the property does not hold!

Non Binary Search Trees

Problem

Consider a tree which is not binary. Each node n of the tree has
the following attributes:

key [n] is the value of the key associated to the node

lc[n] is the pointer to the leftmost child

rs[n] points to the closest right sibling of the node

ls[n] points to the closest left sibling of the node

p[n] points to the parent of the node

The root node has clearly no parent, neither siblings.
Question: Is it possible to employ this type of tree as a search one?
How?

Non Binary Search Trees

What does It mean having a search tree?

We can discard a branch of the subtree rooted in current node
depending on its comparison with the element to be searched

Since there are only 2 outcomes for the comparison not
yielding the searched element, we need only 2 possible
branches for each node out of the 4 possible ones for a generic
node (lc[n], rs[n]ls[n], p[n]). How to select them?

Consider the root element: only lc[n] is not NIL: trivial choice

Consider now the leftmost child: ls[n] is NIL, p[n] is the root,
which has already been visited in the look-up, thus there are
only 2 alternatives: lc[n] and rs[n]

Consider now a generic node: both ls[n] and p[n] have already
been visited, since we have no other paths to this element
from the root, thus there are only 2 choices: lc[n] and rs[n]

Non Binary Search Trees

Data Structure Design

We can organize the tree as follows

Given a node n, all the elements stored in the sub-trees rooted
in n’s children are smaller than n

All the elements stored in the sub-trees rooted in n’s right
siblings are greater than n

An Example

34

18

8 10

24

20 22 23

31

27 30

Non Binary Search Tree

Which element is stored in the root? ⇒ The maximum!

Search strategy: choose the leftmost child if the searched key
is smaller than the current node, the right sibling otherwise

Searching Algorithm

SEARCH(T , k)

1 node ← T .root
2 while node 6= NIL
3 do if key [node] = k
4 then return node
5 if k < key [node]
6 then node ← lc[node]
7 else node ← rs[node]
8 return NIL

Non Binary Search Tree

Successor Algorithm

Where is the successor of a node? There are 2 cases:

1 The node has a right sibling: the successor is the minimum of
the subtree rooted in the right sibling

2 The node has no right sibling: the successor is among its
ancestors, since the children are always smaller

Which ancestor? The parent! Indeed, the left siblings are
smaller, while the parent is the closest ancestor being greater
than the node

SUCCESSOR(T , z)

1 if rs[z] = NIL
2 then return p[z]
3 node ← rs[z]
4 while lc[node] 6= NIL
5 do node ← lc[node]
6 return node

Non Binary Search Trees

Predecessor Algorithm

Where is the predecessor of a node? There are 2 cases:

1 The node has children: the predecessor is the rightmost one

2 The node has no children: as parent nodes are all greater, the
predecessor is the first left sibling found among its ancestors

PREDECESSOR(T , z)

1 if lc[z] = NIL
2 then node ← z
3 while node 6= NIL
4 do if ls[node] 6= NIL
5 then return ls[node]
6 node ← p[node]
7 return NIL
8 node ← lc[z]
9 while rs[node] 6= NIL

10 do node ← rs[node]
11 return node

Non Binary Search Trees

Insertion Algorithm

INSERT(T , z)

1 if T .root = NIL
2 then T .root = z
3 else if key [z] > key [T .root] � Insert in place of the root
4 then p[T .root]← z
5 lc[z]← T .root
6 T .root ← z
7 else � Place the node where it will be found by SEARCH
8 node ← T .root
9 while node 6= NIL

10 do pred ← node
11 if key [z] < key [node]
12 then node ← lc[node]
13 else node ← rs[node]
14 if key [z] < key [pred]
15 then lc[pred]← z
16 p[z]← pred
17 else rs[pred]← z
18 ls[z]← pred
19 p[z]← p[pred]

Non Binary Search Trees

Deletion

Consider again our example tree:

34

18

8 10

24

20 22 23

31

27 30

How do we delete a node? ⇒ We have different cases! Let’s tackle
them...

Non Binary Search Tree

Case 1

Delete a node with no subsequent nodes (neither children, nor
siblings)

This is the simplest one: simply deletes the node

34

18

8 10

24

20 22 23

31

27 30

Non Binary Search Tree

Case 1

Delete a node with no subsequent nodes (neither children, nor
siblings)

This is the simplest one: simply deletes the node

34

18

8 10

24

20 22

31

27 30

Non Binary Search Tree

Case 2

Delete a node with one subsequent node

We need to link its single subtree to the previous node in the
tree

34

18

8 10

24

20 22 23

31

27 30

Non Binary Search Tree

Case 2

Delete a node with one subsequent node

We need to link its single subtree to the previous node in the
tree

34

18

10

24

20 23

27 30

Non Binary Search Tree

Case 3

Delete a node with 2 subsequent nodes

In this case, we need to replace the node either with its
successor or with its predecessor

The successor (resp. predecessor) is then erased using case 2
algorithm, since we know it has no children (resp. no right
sibling)

34

18

8 10

24

20 22 23

31

27 30

Non Binary Search Tree

Case 3

Delete a node with 2 subsequent nodes

In this case, we need to replace the node either with its
successor or with its predecessor

The successor (resp. predecessor) is then erased using case 2
algorithm, since we know it has no children (resp. no right
sibling)

34

20

8 10

23

22

31

27 30

Non Binary Search Tree

Case 4?

It seems all possible cases are covered

However, there is still a particular case to be handled

What happens when we want to erase the root of the tree?

Erasing the Root

Since the root node cannot have siblings, we know that there are
only 2 possibilities:

1 The root node has no left child: it is the only node of the
tree, thus we simply erase it

2 The root node has a left child: Can we apply case 2
algorithm?

Non Binary Search Tree

Erasing The Root

The root has no previous node, indeed both ls[n] and p[n] are
NIL

If we simply erase it, and update the T .root pointer to the
leftmost child, we get an incorrect tree if this child has siblings

Which node to be placed in the root?

Recall one property of this type of tree: which element is
stored in the root? The maximum!

Therefore, if we erase the root element, the new one must be
the bigger element apart from the erased one ⇒ predecessor
of the root!

Where is the predecessor? It is the rightmost sibling among
the root’s children

Non Binary Search Tree

Erasing The Root

Therefore, if the element to be erased is the root and it has a
left child, we search for the predecessor, we replace the root
with its key and we erase it

As for the successor, we know the predecessor has no right
sibling, thus we can apply the algorithm for case 2

34

18

8 10

24

20 22 23

31

27 30

Non Binary Search Tree

Erasing The Root

Therefore, if the element to be erased is the root and it has a
left child, we search for the predecessor, we replace the root
with its key and we erase it

As for the successor, we know the predecessor has no right
sibling, thus we can apply the algorithm for case 2

31

18

8 10

24

20 22 23

27 30

Number of Rotations

Problem

Given a binary search tree with n nodes, how many rotations are
possible?

Rotations Recap

x

α y

β γ

LEFT-ROTATE−−−−−−−−−−→
RIGHT-ROTATE←−−−−−−−−−−−

y

x

α β

γ

Number of Rotations

Solving the Problem

Let’s try to think about what is actually rotating in rotations

Basically, an edge between 2 nodes move from a left subtree
to a right one (RIGHT-ROTATE), and vice versa
(LEFT-ROTATE), rotating the 2 nodes altogether

Can the transformation be applied to every edge?

Yes, just the 2 nodes x , y are needed

Hence, there is a possible rotation for each edge in a binary
search tree. Thus, the solution of the problem is found if we
know the number of edges

In a tree, a node has exactly one ingoing edge, except for the
root

Therefore, n − 1 links exist ⇒ n − 1 rotations are possible

Persistent Trees

Problem

Sometimes, it may be useful to keep track of all the past versions
of a set of elements. One trivial solution is duplicate the set for
each modification performed and apply it on the copy. However,
this solution increases a lot the memory consumption.
Nevertheless, we can try to minimize the number of elements to be
copied and modified by taking into account only the ones affected
by modifications of the set. Suppose the set is stored in a binary
search tree. A data structure which keeps track of all the past
versions of the tree is called a persistent tree. Which nodes need
to be modified (and thus duplicated) during the common tree
operations (SEARCH, INSERT, DELETE) to get a persistent
tree?

Persistent Trees

An Unpleasant Outcome

Consider an INSERT operation

For sure, we introduce a new element in the tree, which needs
to be linked as a child of its parent node

Hence, we have to modify, and thus duplicate, its parent too

Moreover, if the parent has another child, we need to update
its parent reference too

Basically, if a node is modified, we need to modify both its
parent and its children, thus it turns out we have to modify
each node of the tree!

Therefore, for a single insertion, a whole copy of the tree is
needed ⇒ the space consumption increases by n for each
modification

Persistent Trees

Improving the Solution

Usually, in a binary search tree there is a bit of redundancy

In particular, parent pointers are surely useful, but the
fundamental tree operations can be performed without them

Indeed, INSERT,SEARCH and DELETE always go down
in the tree, whilst visit algorithms aptly use recursion

TREE-SUCCESSOR may be re-written without employing
the parent pointer still achieving O(h) complexity

Which benefits do we have for a persistent tree if we remove
parent pointers?

When we edit a node, we no longer need to update its
children, since there is no more a parent pointer to be
updated!

How many nodes do we need to modify now?

Persistent Trees

Insertion

During insertion, the parent of the new node must be updated
with the reference to its new child

Moreover, the grandfather of the inserted node needs to be
updated too, since its child was modified

With the same line of reasoning, all the ancestors up to the
root needs to be updated, thus at most O(h) nodes

We can copy all the visited nodes during the descendant
searching for the place where to insert the new node, still
retaining O(h) complexity

Persistent Trees

PERSITENT-TREE-INSERT

PERSISTENT-TREE-INSERT(T , z)

1 if T .root = NIL
2 then T ′.root ← z
3 else T ′.root ← COPY-NODE(T .root)
4 x ← T ′.root
5 while x 6= NIL
6 do y ← x
7 if z .key < x .key
8 then x ← COPY-NODE(x .left)
9 y .left ← x

10 else x ← COPY-NODE(x .right)
11 y .right ← x
12 if z .key < y .key
13 then y .left ← z
14 else y .right ← z
15 return T ′.root

Persistent Trees

Insertion Example - Original Graph

8

6 11

5 7 13

Insertion Example - Inserting 9

8

6 11

5 7 13

8’

11’

9

Persistent Trees

Deletion

For deletion, we have 2 cases:
1 The node to be erased has less than 2 children
2 The node to be erased has 2 children

In the first case, we simply update pointers of the parent
node, and thus of all the ancestors, which are at most O(h)

In the second case, we replace the erased node with the
successor and we erase the successor, thus both its ancestors
and the ancestor nodes of its successor need to be modified

However, if z has 2 children, it is an ancestor of its successor
y , hence only the ancestors of y need to be updated ⇒ still
O(h) nodes

Persistent Trees

Can We Get Persistent Red and Black Trees?

They employ additional operations: Rotations and fixup
algorithms

Both these algorithm leverages the parent pointer

Therefore, can we get parent nodes in O(1) still retaining
O(log(n)) space?

The key idea is that we can build a stack of all the ancestors
of the node to be inserted/erased with complexity O(log(n))

Since these algorithms are used in INSERT/DELETE
procedures, building this stack does not increase asymptotic
complexity

How many nodes need to be updated by these operations?

Persistent Trees

Nodes Affected By Rotations

Rotations involve 2 nodes x , y , where x is the parent of y ,
and their ancestors

Indeed, after the rotation, y becomes the children of the
parent of x , thus the parent must be updated

Conversely, moving the subtrees of x , y does not require to
update the children nodes, since just the pointers in x and y
are modified

Since x is the parent of y , they share the same ancestors

In conclusion, rotations modify O(log(n)) nodes

Persistent Trees

Nodes Affected by Fixup Algorithms

Fixup perform at most 3 rotations, involving O(log(n)) nodes

Additionally, fixup may change the color of the sibling node
(which is not an ancestor of the inserted/erased node z) and
the two nephews (in case of DELETE-FIXUP). Thus all
their ancestors need to be updated. However, the ancestors of
these nodes are a subset of the ones of z

A single call of fixup algorithm modifies O(log(n)) nodes

However, fixup algorithms are recursive: they start from the
inserted/erased node, and then they may be invoked on its
ancestor, up to the root: O(log(n)) recursive calls

Each of this call adds at most 3 nodes to the set of modified
nodes (the sibling/nephews of the current fixed-up node)

In conclusion, the nodes to be modified are at most O(log(n))

