
Algorithm Design - Array

Nicolò Felicioni1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

nicolo . felicioni @ polimi . it

May 25, 2021

1Based on Nicholas Mainardi’s material.



Exact-Sum

Exact Sum Problem

Given an array and a value x , find if there are 2 elements a[i ], a[j ]
such that a[i ] + a[j ] = x

Naive idea: check all the possible pairs to see if they sum up
to x
Complexity is O(n2)

An Alternative Strategy

When problems are slower that O(n log(n)), we can always try
to observe how to solve the same problem on a sorted array

If we can solve it with at most O(n log(n)) complexity, we
manage to improve the solution

The general idea is that sorted array are more structured, thus
we can employ this property to design better algorithms



Exact-Sum

Exact-Sum on a Sorted Array

Let’s identify the property introduced by a sorted array

If a[i ] + a[j ] > x ⇒ ∀z ≥ j(a[i ] + a[z ] > x), and the same for i

Conversely, if a[i ] + a[j ] < x ⇒ ∀z ≤ i(a[z ] + a[j ] < x), and
the same for j

These 2 properties means that:

if a[i ] + a[j ] < x , then we need to increase either i or j
if a[i ] + a[j ] > x , then we need to decrease either i or j

Which one of these indexes shall we modify?

Intuition: it would be nice if one of them is always increased
while the other one is always decreased, since there is no
arbitrary choice

For instance, if i = 1 and j = n, then we can either increase i
or decrease j , depending on the outcome of a[1] + a[n] > x



Exact-Sum

Exact-Sum on a Sorted Array

Can we extend this idea to different pairs of i , j?
Exact-Sum(A, x)

1 i ← 1
2 j ← A.length
3 while i < j
4 do if A[i ] + A[j ] = x
5 then return True
6 else if A[i ] + A[j ] > x
7 then j ← j − 1
8 else i ← i + 1
9 return False

Why does it work? During the first iteration, we can
immediately discard either i or j depending on the sum



Exact-Sum

Exact-Sum on a Sorted Array

At the next iteration, we can still discard either i or j because
the same properties still holds! Let’s look at all the cases:

1 i = 2, j = n and a[2] + a[n] < x . Then, we can immediately
discard i = 2, since ∀z ≤ n(a[2] + a[z ] < x). Thus, we increase
i

2 i = 2, j = n and a[2] + a[n] > x . Then, we can discard j = n,
since ∀z ≥ 2(a[z ] + a[n] > x), while a[1] + a[n] < x , otherwise
we would not be in this case. Thus, we decrease j

3 i = 1, j = n− 1 and a[1] + a[n− 1] < x . Then, we can discard
i = 1, since ∀z ≤ n− 1(a[1] + a[z ] < x), while a[1] + a[n] > x ,
otherwise we would not be in this case. Thus, we increase i

4 i = 1, j = n− 1 and a[1] + a[n− 1] > x . Then, we can discard
j = n − 1, since ∀z ≥ 1(a[z ] + a[n − 1] > x). Thus, we
decrease j



Exact-Sum

Exact-Sum on a Sorted Array

In conclusion, it seems that at each iteration, all z < i and all
t > j have already been discarded, thus leaving only one
possible choice.

We already see that this is true in the first 2 iterations, let’s
generalize it via an inductive proof

There are 2 cases for the inductive step:
1 a[i ] + a[j ] > x . In this case, we know that
∀z ≥ i(a[z ] + a[j ] > x), while all z < i have already been
discarded, thus we know ¬∃z < i(a[z ] + a[j ] = x). Therefore,
we can discard the current value j , and decrease it by 1

2 a[i ] + a[j ] < x . In this case, we know that
∀z ≤ j(a[i ] + a[z ] < x), while all z > j have already been
discarded, thus we know ¬∃z > j(a[i ] + a[z ] = x). Therefore,
we can discard the current value i , and increase it by 1



Exact-Sum

Exact-Sum on a Sorted Array

In conclusion, at each iteration we can discard either i or j
depending on the outcome of the comparison, thus the
algorithm works

Time complexity? O(n), since i and j come closer by 1 at
each iteration, starting from a distance of n − 1

Complete Exact-Sum

Since we need to perform sorting before being able to run this
algorithm, the time complexity of the whole EXACT-SUM
is O(n log(n))



Sorting Arrays on Attributes

Problem

We have an array where each element has a color (red, green and
blue) and some additional data. We want to sort, with O(k) space
complexity, this array according to the color of its elements, where
red < green < blue. The algorithm may be non-adaptive, i.e.,
order of red, green and blue elements may not be preserved

We can use every sorting algorithm with O(1) space
complexity (e.g INSERTION-SORT)

With SHELL-SORT we can do it in O(n
3
2 )

Can we do it better?

Well, the domain of the attributes to be used for sorting is
finite, thus we can use an algorithm like
COUNTING-SORT



Sorting Arrays on Attributes

Algorithm Design

We cannot use COUNTING-SORT as is. Indeed:

Either it uses an additional array to write the results
Or since each bucket used to count occurrences refers to a
particular value, it simply writes this value on the original array
for the number of times written in the bucket ⇒ since there
are additional data attached to the attributes referred by
buckets, we cannot know these data when writing the
elements, but we need to copy them from the array elements

Therefore, we need to exploit information of the occurrences
counters to overwrite the array in place, including additional
data which cannot be inferred by the bucket itself

What information in each bucket?



Sorting Arrays on Attributes

Algorithm Design

Each bucket stores the position where we can write an
element having a sorting attribute equal to the one referred by
the bucket (e.g if red bucket is 3, we can write a red element
in slot 3)

Thus, we know the final position of the element ⇒ same
writing mechanism of CYCLE-SORT

Thus, the algorithm first counts the occurrences for each
color, determining the positions of the array where we can
write a given colored element

Then, it places each element in its color writing position,
decrementing it for that color after the insertion

The next element to be placed is the one being overwritten by
previous iteration



Sorting Arrays on Attributes

Pseudocode

COLORING-SORT(A)

1 Colors[3]← [0, 0, 0] � Store occurrences of each color
2 for i ← 1 to A.length
3 do if A[i ].color = red
4 then Colors[1]← Colors[1] + 1
5 else if A[i ].color = green
6 then Colors[2]← Colors[2] + 1
7 else if A[i ].color = blue
8 then Colors[3]← Colors[3] + 1
9 Colors[2]← Colors[2] + Colors[1]

10 Colors[3]← Colors[3] + Colors[2]
11 Start[3]← [1, Colors[1] + 1, Colors[2] + 1] � Store the first available position for each color, used later on
12 for i ← 1 to 3
13 do item ← A[Start[i ]]
14 while Colors[i ] ≥ Start[i ] � Avoid infinite loop on writing A[start[i]]
15 do if item.color = red
16 then SWAP(item, A[Colors[1]])
17 Colors[1]← Colors[1]− 1
18 else if item.color = green
19 then SWAP(item, A[Colors[2]])
20 Colors[2]← Colors[2]− 1
21 else if item.color = blue
22 then SWAP(item, A[Colors[3]])
23 Colors[3]← Colors[3]− 1

Time complexity? O(n), since each element is written only once to
its final position, as in cycle-sort



Equal Sum Partitioning Problem

Problem

Given an array, we want to figure out if it can be partitioned in a
set of pairs all having the same sum

Even the naive solution seems not so trivial

Computing all possible partitions is not that easy by itself!

Reasoning on the problem

First of all, the array can be partitioned in pairs only if its
length is even

If the length is odd, we can already provide a negative answer

Similarly, if the sum of the elements of the array is not a
multiple of n

2 , then the partition cannot exists

Does a sorted array help?



Equal Sum Partitioning Problem

Equal Sum Partitioning Problem on a Sorted Array

Suppose the array can be partitioned.

Consider A[1] and its paired element j : A[1] is the minimum
element of the array ⇒ A[j ] is the maximum ⇒ j = A.length

Indeed, if A[j ] is not the maximum, then it means that there is
another element A[h] > A[j ], which is paired with another
element A[k] ≥ A[i ] ⇒ impossible that
A[i ] + A[j ] = A[k] + A[h]

By considering the sub-array A[2 . . .N − 1], with the same line
of reasoning we must derive that A[2] is paired with
A[A.length − 1] in a sorted array, and so on

Therefore, in a sorted array, there is only one possible
partition which needs to be tested, the one made by pairs
A[i ],A[A.length + 1− i ]



Equal Sum Partitioning Problem

Algorithm Design

First, we check that the length is even and the sum is a
multiple of n

2

Then, we sort the array

Eventually, we check if all the pairs A[i ],A[n − i + 1] have the
same sum

Complexity Analysis

Checking the pairs can be done in O(n)

Thus the complexity is dominated by sorting ⇒ O(n log(n))



Equal Sum Partitioning Problem

A Variant

Suppose we want to partition the array in set of 3 elements,
instead of 2. As an additional constraint, if the partition exists,
then each element of the array belongs exactly to a unique triple
whose sum is the target value2. How does the algorithm change?

We lose the nice property observed on a sorted array for pairs

Therefore, we need another way to provide an answer

Again, the array can be partitioned in set of 3 elements only if
its length n is a multiple of 3

Moreover, the array can be partitioned in set of 3 elements
only if the sum of the elements is a multiple of n

3 !

Therefore, we can easily compute the value of the sum of
each set in the partition. How?

2Otherwise we get the 3-partition problem, which is NP-complete



Equal Sum Partitioning Problem

Determining the sum of the sets

Compute the sum of all the elements of the array S

Verify if S is divisible by n
3

In this case, the sum of each set is exactly s = S
n
3

= 3S
n

Algorithm Design

How can we use the computed value s to find the partitions?

Suppose we choose an element A[i ]. In order to find a set, it
is sufficient to find a pair A[j ],A[z ] s.t.
A[i ] + A[j ] + A[z ] = s ⇒ A[j ] + A[z ] = s − A[i ]

But s − A[i ], since we choose A[i ], is a known value, thus we
need to find a pair which sums up to a known value s − A[i ].
Which algorithm do we know for this?



Equal Sum Partitioning Problem

Algorithm Design

EXACT-SUM(A, x)! In particular, we know a quite efficient
linear version which works on a sorted array

Thus, we sort the array and then we exploit this algorithm: we
know that the solution provided is the right one because it is
unique (recall additional constraint in the problem statement)

However, we need to find all the sets, not just one, thus
different calls to EXACT-SUM for each chosen A[i ]

Therefore, if EXACT-SUM successfully returns a pair, we
need to erase it from the array altogether with the chosen
element A[i ], to avoid overlapping among identified sets

Erasure can be performed by moving the identified triple to
the beginning of the array and shift, not swap, all the others
to preserve sorting property of the remaining elements



Equal Sum Partitioning Problem

Pseudocode

3-SUM-PARTITIONING(A)

1 if A.length mod 3 6= 0
2 then return False
3 S ← 0
4 for i ← 1 to A.length
5 do S ← S + A[i ]

6 if S mod A.length
3
6= 0

7 then return False

8 s ← 3S
A.length

9 MERGE-SORT(A)
10 for start ← 1 to A.length by 3
11 do (found, j, z)← EXACT-SUM(A[start + 1, . . . , A.length], s − A[start])
12 if !found
13 then return False
14 j ← j + start + 1
15 z ← z + start + 1
16 elj ← A[j]
17 elz ← A[z]
18 offset ← 0
19 for i ← A.length downto start + 1 + offset
20 do if i − offset = z ∨ i − offset = j
21 then offset ← offset + 1
22 A[i ]← A[i − offset]
23 A[start + 1]← elj
24 A[start + 2]← elz
25 return True



Equal Sum Partitioning Problem

Complexity Analysis

Computing S costs O(n)

Then, MERGE-SORT costs O(n log(n))

The for cycle at line 10 is performed n
3 times at most (when

the array can be partitioned)

Each EXACT-SUM costs O(n − 3i) on a sorted array

The for cycle at lines 19− 22 costs O(n − 3i)

Thus, the outer for body is O(n − 3i), repeated by n
3 times

⇒
∑ n

3
i=1 n − 3i ⇒ O(n2)

In conclusion, the complexity is dominated by the outer for
loop, thus it is O(n2)



Number of Inversions

Number of Inversions Problem

Given an array, we want to compute the number of inversions, that
is the pairs i , j where i < j and a[i ] > a[j ].

Naive idea: check all the possible pairs and count the ones
which are an inversion

Complexity is O(n2)

Trying to Improve

Can we think about the same problem on a sorted array?

On a sorted array there are no inversions!

We cannot sort the array, since the problem depends on the
position of the elements in the array, but . . .



Number of Inversions

Algorithm Design

There is for sure a relation with sorting

A sorted array has 0 inversions

Conversely, a reversely sorted array has n(n+1)
2 inversions, since

for an element in position i , all a[j ], j > i are smaller than a[i ]

A possible solution: what if the number of inversions for an
element is the difference between the indexes in the sorted
array and in the original one (if this difference is > 0)?

Consider a = [99, 4, 88, 7, 5,−3, 1, 34, 11]. In the sorted array,
4 is in position 3, thus according to our idea the number of
inversions should be 3− 2 = 1. But . . .

The number of inversions is 2, since 4 > −3 and 4 > 1

In this example, the problem resides in 99 being moved after 4
in sorted array, and this move ”undoes” one inversion of 4



Number of Inversions

Algorithm Design

However, the same idea works on a particular instance of the
problem: when the array is split into 2 sorted sub-arrays!

Indeed, consider separately elements of the first and the
second sub-array:

for elements in the first sub-array, there are no elements on
their left which are moved on their right by sorting, since
elements on their left are smaller. Therefore, the difference
between their positions in the sorted and unsorted arrays is
given only by elements moved on their left because they are
smaller, i.e. the inversions
for elements in the second sub-array, there are no inversions,
since all the elements on their right are bigger, thus the
difference between their positions in the sorted and unsorted
arrays is always negative, in turn yielding a number of
inversions equal to 0



Number of Inversions

Algorithm Design

How to exploit this particular case for the whole algorithm?

On a sub-array with 2 elements, the inversions can be
computed with one comparison, and sorted accordingly

If we consider 2 of these sub-arrays, we get a sub-array split in
2 sorted sub-arrays ⇒ we can apply our algorithm on it!

Each of the inversions computed at each level represents a
pair of elements which are in the wrong order in the unsorted
array ⇒ the total number of inversions is the sum of all the
inversions computed on each sub-array, until we get to the
whole array being sorted

Wait! Doesn’t it remind a well known sorting algorithm?



Number of Inversions

Algorithm Design

It is the same divide-et-impera scheme of MERGE-SORT!

Basically, we are sorting with this algorithm and we count the
number of inversions at each MERGE operation by
computing differences between the indexes in sorted and
unsorted sub-arrays!

How to modify MERGE? Consider A to be the sub-array to
be merged, we build an array B s.t. ∀i ≤ A.length(B[i ] = i)

Then,all the swaps performed by MERGE on A are mirrored
on B ⇒ at the end of MERGE, B[i ] stores the index of A[i ]
in the unsorted sub-array

Thus, the inversions in each MERGE can be counted as∑B.length
i=1 MAX(0, i − B[i ])

Thus, same complexities: O(n log(n)) time, O(n) space



Maximum Sub-array

Problem

Given an array, we want to find the sub-array which maximizes the
sum of its elements. For instance, if
a = [192, 169, 130, 128,−450,−340, 1280, 340,−34], the sub-array
[1280, 340] has the maximum sum of its elements

Naive solution is not so efficient . . .

How many possible sub-arrays? ⇒ O(n2)

Does Sorting Help?

We cannot sort since we lose the position of elements, and
thus we cannot correctly identify sub-arrays

No benefit from sorting!



Maximum Sub-Array

Algorithm Design

Why is the problem difficult?

Because of negative values!

Otherwise, the maximum sub-array is just the array itself!

Thus, as soon as there are no negative values in a sub-array,
no need to test for its sub-arrays since they are surely not the
maximum ones

How to handle negative values? We may split the array in
positive sub-arrays and check which one has the maximum
sum

Does it work?



Maximum Sub-Array

Algorithm Design - 2

Consider a = [3, 2, 4, 10,−12, 9, 5]

With our strategy, the maximum sub-array is [3, 2, 4, 10],
whose sum equal to 19

However, the sum of all elements of the array is 21!

We cannot simply discard negative values

Basically, if a sub-array is preceded by a sub-array with a
positive sum, surely their concatenation has a higher sum than
it

Conversely, if a sub-array is followed by a sub-array with a
positive sum, surely their concatenation has a higher sum than
it

Let’s put this idea in an iterative version on each element . . .



Maximum Sub-Array

Algorithm Design - 3

Idea for the algorithm: iterate through the array and add each
element to the sum of the current sub-array until this sum is
positive

Until we get a positive sum, it is worth to merge this
sub-array with following ones instead of splitting them

If the sum becomes negative, it is zeroed and its computation
starts again from the next element (indeed if the sum
becomes negative the current element is necessarily negative)

Computing the maximum among the sums encountered during
the iterations on elements of the array allows us to identify
the maximum sub-array

In this way, if the suffix of a sub-array decreases its sum, this
suffix is not appended to the sub-array, maximizing the sum



Maximum Sub-Array

Pseudocode
Maximum-subarray(A)

1 maxsum ← currsum ← A[1]
2 maxbegin ← currbegin ← maxend ← 1
3 if currsum ≤ 0
4 then currsum ← 0
5 currbegin ← 2
6 for i ← 2 to A.length
7 do currsum ← currsum + A[i ]
8 if currsum > maxsum

9 then maxsum ← currsum

10 maxbegin ← currbegin

11 maxend ← i
12 if currsum ≤ 0
13 then currsum ← 0
14 currbegin ← i + 1
15 return (maxbegin,maxend ,maxsum)


