
Ranking and queries: as good as it gets

Davide Martinenghi
Lugano, July 5, 2012

Davide Martinenghi

My main research areas

§ Data Integrity Checking
– Integrity constraints are properties that represent the legal states

of a database
– How to best preserve full satisfaction of constraints in the face of

updates? (incremental integrity maintenance)
– What to do when we update a database that already violates

some constraints? (inconsistency-tolerant integrity checking)

§ Query Answering over the Web
– How to answer queries over data behind forms (Deep Web)?

(query answering under access limitations)
– Lots of distinctive (but often implicit) aspects of data on the Web

• recency
• incompleteness of information
• different levels of granularity in the data
• uncertainty
• provenance

§ Ranking queries (this talk)

2

Davide Martinenghi

Outline

§ Ranking queries

§ Rank aggregation
– Based on position
– Aggregation functions

§ Ranking in the real world
– Joins
– Proximity
– Uncertainty
– Diversity

§ Future directions

3

Davide Martinenghi

Ranking queries

§ Main idea: focus on the best query answers according to
some criterion, without computing the full result
– A.k.a. “top-k” queries

§ Main applications:
– Combination of user preferences expressed according to various

criteria
• Example: ranking restaurants by combining criteria about

culinary preference, driving distance, stars, …
– Nearest neighbor problem (e.g., similarity search)

• Given a database D of n points in some metric space, and a
query q in the same space, find the point (or the k points) in
D closest to q

– Search computing
• “Where can I attend an interesting conference in my field

close to a sunny beach?”
– …

4

Davide Martinenghi

RANK BY 0.4/h.price + 0.4*r.rating + 0.2*r.hasMusic

LIMIT 5

Ranking queries: example
SELECT h.neighborhood, h.hid, r.rid

FROM HotelsNY h, RestaurantsNY r

WHERE h.neighborhood = r.neighborhood

Neighborhood Hid Rid
West Village
Midtown East
Chelsea
Midtown East
Midtown East
Hell’s Kitchen
Midtown West
Upper East Side
Harlem
Tribeca

H89
H248
H427
H248
H597
H662
H141
H978
H355
H381

R585
R197
R572
R346
R197
R223
R276
R137
R49
R938

• • • • • • • • •

Neighborhood Hid Rid
East Village
Gramercy
Midtown West
Hell’s Kitchen
Upper West Side

H346
H872
H141
H662
H51

R738
R822
R276
R498
R394

Full Join Results Rank Join Results

5

Davide Martinenghi

Rank aggregation (your problem)

§ Rank aggregation is the problem of combining several
ranked lists of objects in a robust way to produce a single
consensus ranking of the objects

§ What is the overall ranking?

§ Who is the best candidate?

6

Candidate
1
2
3
4
5

Candidate
2
4
5
1
3

Candidate
4
2
5
3
1

Candidate
5
1
3
4
2

Candidate
3
5
1
2
4

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

[Fagin, PODS 1996]

Davide Martinenghi

Rank aggregation and scores

§ Metric approaches are preferred over axiomatic
approaches (Arrow’s impossibility theorem)

§ When scores are opaque, the goal is to find a new
ranking R whose total distance to the initial rankings R1,
…, Rn is minimized
– For several metrics, NP-hard to solve exactly

• E.g., the Kendall tau distance K(R1, R2), defined as the
number of exchanges in a bubble sort to convert R1 to Rn

– May admit efficient approximations (e.g., median ranking)

§ When scores are visible, the consensus ranking is
determined by an aggregation function

7

Davide Martinenghi

Rank aggregation – example with scores

§ Aggregation function:

Score(cand) = 0.30 s1 + 0.25 s2 + 0.20 s3 + 0.15 s4 + 0.10 s5

§ What is the overall ranking?

§ Who is the best candidate?

8

Cand s1

1 .9
2 .7
3 .5
4 .3
5 .1

Cand s2

2 .65
1 .6
5 .55
4 .5
3 .45

Cand s3

4 .99
2 .97
5 .95
3 .93
1 .91

Cand s4

5 .6
1 .5
3 .4
4 .3
2 .2

Cand s5

3 .8
1 .7
5 .65
2 .63
4 .62

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

Davide Martinenghi

§ Aggregation function:
Score(cand) = wSIGMOD s1 + wVLDB s2 + wICDE s3 + wTODS s4 + wTKDE s5

§ What weights should I convince you to use so that I
become the best candidate?
– (point of view of the seller/product manufacturer)

Reverse top-k queries (my problem) 9

Cand s1

1 2
4 2
2 0
3 0
5 0

Cand s2

4 4
1 2
2 0
3 0
5 0

Cand s3

1 1
2 1
4 1
3 0
5 0

Cand s4

1 1
5 0
2 0
3 0
4 0

Cand s5

1 2
4 1
2 0
3 0
5 0

SIGMOD VLDB ICDE TODS TKDE

[Vlachou et al., ICDE 2010]

Full papers in the top database venues in the last 5 years

Davide Martinenghi

Rank aggregation in data-centric contexts

§ Traditionally, two ways of accessing data:
– Sorted access: access, one by one, the next element (together

with its score) in a ranked list, starting from top
– Random access: given an element (id), retrieve its score

(position in the ranked list or other associated value)

§ Minimizing the accesses when determining the top k
items
– A cost is incurred for each item read from a ranking
– Can I improve on the current best aggregate score if I read more

items?
– Thresholds are used to ensure that no further item needs to be

read

10

Davide Martinenghi

§ Almost relational model, with a lot of “quirks”
– Web interfaces with input and output fields (access patterns)
– Results are typically ranked

tripAdvisor(Cityi, InDatei, OutDatei, Personsi, Nameo, Popularityo,ranked)
– Many other needs: joins, dirty data,
 deduplication, diversification,
 uncertainty, incompleteness,
 recency, paging, access costs…

Ranking in the real world 11
[Calì & Martinenghi, ICDE 2008] [Martinenghi & Tagliasacchi, TKDE 201X]

Davide Martinenghi

§ Total depth (aka sumDepths) is the primary cost metric

§ Early termination: no algorithm can be optimal
– But an algorithm can be instance optimal, i.e., the best possible

algorithm (to within a constant factor) on every input instance

The Rank Join Problem

Rank Join

R1 R2

k
S

Descending
score bound

Top k join
results

depth 2depth 3

12
[Ilyas et al., VLDB 2003]Computing the k join results with

highest scores according to some
aggregation function S

Davide Martinenghi

Proximity Rank Join: example

§ A smartphone user wants to organize the evening by
finding:

– a restaurant, a movie theater and a hotel that are
• nearby
• close to each other
• recommended in terms of price, user rating, and number of stars

13
[Martinenghi & Tagliasacchi, VLDB 2010]
[Martinenghi & Tagliasacchi, TODS 2012]

Davide Martinenghi

Proximity rank join problems

§ Looking for combinations of heterogeneous objects

§ Each object is equipped with
– A score
– A real-valued feature vector

§ The aggregation function assigns a score to a
combination based on
– The individual scores
– The proximity to the query vector
– Their mutual proximity

§ Objects can also be retrieved by distance from the query

14

Hotel Category Location
Villa D’Este 5 [45.62 N, 9.32 E]
Metropole Suisse 4 [45.65 N, 9.33 E]
Palace Hotel 4 [45.64 N, 9.31 E]

Davide Martinenghi

Proximity Rank Join 15

Davide Martinenghi

Proximity Rank Join 16

Davide Martinenghi

Distance-based access 17

Davide Martinenghi

Distance-based access 18

Davide Martinenghi

Distance-based access 19

Davide Martinenghi

Distance-based access 20

Davide Martinenghi

Distance-based access 21

Davide Martinenghi

Distance-based access 22

Davide Martinenghi

Distance-based access 23

Davide Martinenghi

Proximity rank join problems

§ Broad applicability

– Information retrieval
• E.g. finding similar documents in different collections given a set of

keywords
•

– Multimedia databases
• E.g. requesting similar images from different repositories given a

sample image

– Bioinformatics
• E.g. discovering orthologous genes from different organisms given a

target annotation profile

24

Davide Martinenghi

Bounding scheme

§ Stopping criterion based on a bounding scheme:

– What is the largest aggregate score of a possible combination
formed with at least one unseen tuple?

– We stop when we have k combinations whose score exceeds
the bound

§ Tight bound (an actually achievable bound)
– Using tight bounds guarantees instance optimality
– Can be computed efficiently when using Euclidean distance

25

Davide Martinenghi

A:11

Table II. Partial combinations formed with
the tuples of Table I.
M τ ∈ PC(M) t(τ) tM� �� -19.2 -19.2

{1} τ(1)1 -20.6 -19.2
τ(2)1 -19.2

{2} τ(1)2 -12.8 -12.8
τ(2)2 -19.4

{3} τ(1)3 -12.8 -12.8
τ(2)3 -20.1

{1,2}
τ(1)1 × τ(1)2 -16.0

-13.5τ(1)1 × τ(2)2 -24.0
τ(2)1 × τ(1)2 -13.5
τ(2)1 × τ(2)2 -20.4

{1,3}
τ(1)1 × τ(1)3 -16.0

-13.5τ(1)1 × τ(2)3 -22.0
τ(2)1 × τ(1)3 -13.5
τ(2)1 × τ(2)3 -26.4

{2,3}
τ(1)2 × τ(1)3 -7.0

-7.0τ(1)2 × τ(2)3 -21.0
τ(2)2 × τ(1)3 -13.1
τ(2)2 × τ(2)3 -26.8

discussed for Algorithm 2, also if τ ′ has been flagged as dominated (line 6). In such a
case, the value of t(τ ′) is not recomputed. The dominance test is executed by checking
the condition in (14) immediately after computing the upper bound t(τ ′), whenever at
least K combinations have been formed (line 9).

ALGORITHM 3: updateBound(τi) distance-based case with dominance check
Input : last seen tuple τi = Ri[pi]; seen tuples Pj , j = 1, . . . , n, curr. values of t(⋅) for all

seen combinations
Output: Tight upper bound t

1 begin
2 t← −∞;
3 for M ⊂ {1, . . . , n} do
4 tM ← −∞;
5 for τ ′ ∈ PC(M) do
6 if τ ′ is not dominated then
7 if (i ∈M ∧ τ ′i = τi) ∨ i �∈M then
8 Compute t(τ ′) solving (9);
9 if �O� =K ∧ t(τ ′) ≤minω∈O S(ω) then

10 Flag τ ′ as dominated;
11 end
12 end
13 tM ←max{tM , t(τ ′)};
14 end
15 end
16 t =max{t, tM};
17 end
18 return t
19 end

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

The remaining n−m variables are lower bounded by the current distances from q, i.e.,
θi ≥ δi, m + 1, . . . , n. The upper bound t(τ) is obtained by solving the following problem

max. ∑m
i=1ws ln(σ(τi)) +∑n

i=m+1ws ln(σmax
i) −∑n

i=1wqθ
2
i −∑n

i=1wµ(θi − 1
n ∑n

j=1 θj)2
s.t. θi = P(x(τi)), i = 1, . . . ,m

θi ≥ δi, i =m + 1, . . . , n (24)

In Appendix A.3 we show that (24) can be written as a convex quadratic program (QP)
with linear constraints, thus it can be efficiently solved using off-the-shelf solvers.
Let θ∗ = [θ∗1 , . . . , θ∗n]T denote the optimal solution of (24). The solution of the original
problem (17) is given by

y∗i = q + θ∗i ν − q
�ν − q� , i =m + 1, . . . , n (25)

i.e., the i-th variable is at distance θ∗i from the query q and on the ray that originates
from q and goes through ν.

Example 4.2. Assume Table I reports all the seen tuples. Thus, δ1 = 1, δ2 = 2√2 and
δ3 = 2

√
2. Solving (17) for the partial combination τ (1)2 gives y∗1 = [√2�2,√2�2]T and

y∗3 = [2,2]T (and t(τ (1)2) = −12.8), which lie along the ray from q to x(τ (1)2). Solving
(17) for τ (1)1 × τ (1)3 requires: i) computing the centroid of τ (1)1 × τ (1)3 (ν = [−0.5,0.25]T);
ii) computing the projections on the line from q to ν (θ1 = −0.22, θ3 = 1.34); iii) solving
(24) to obtain θ∗2 = 2√2; iv) computing y∗2 = [−2.53,1.26]T according to (25); v) computing
t(τ (1)1 × τ (1)3) = −16. Figure 3 shows that the optimal locations of the unseen tuples are,
in this case, at the minimum allowed distances, but this does not hold in general.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

τ (1)1

τ (2)1 τ (1)2

τ (2)2

τ (1)3

τ (2)3

q

Fig. 3. Solution of problem (17) with the tuples of Table I for: (i) partial combination τ(1)2 ; (ii) partial combi-
nation τ(1)1 ×τ(1)3 whose centroid is indicated by a black empty circle. The optimal locations of unseen tuples
are represented by empty circles collinear with the the centroid and the query.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Tight bound for Euclidean distance 26

!
"!

Davide Martinenghi

Uncertainty in rank join

§ Users are often unable to precisely specify the
scoring function

§ Using trial-and-error or machine learning may be
tedious and time consuming

§ Assumptions:
– Linear scoring function:
 S = w1s1 + w2s2 + … + wnsn
– User-defined weights w1, w2,…,wn are:

• uncertain, and, w.l.o.g.,
• normalized to sum up to 1

§ [Part of a current FET proposal, second round]

27
[Soliman, Ilyas, Martinenghi, Tagliasacchi, SIGMOD 2011]

Davide Martinenghi

Representing scoring functions on the simplex 28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w1

w
2

w̄

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

w1

w̄

w2
w

3

§ Each point on the simplex represents a possible
scoring function

§ We assume that p(w) is uniform over the simplex

Davide Martinenghi

Uncertain scoring

§ Uncertainty induces a probability distribution on a
set of possible rankings

§ Each ordering occurs with a probability

(weights in the simplex inducing that ranking)

§ When N is large, we usually focus on a prefix of
length K<N of an ranking

29

Davide Martinenghi

Example (our problem, again)

§ Top-k query
SELECT candidate, sSIGMOD, sTODS
FROM SIGMOD, TODS
RANK BY wSIGMOD sSIGMOD + wTODS sTODS
LIMIT 1

§ Results and possible rankings

30

Candidate SSIGMOD STODS

1 7 5
2 2 6
3 4 7
4 5 2

(wSIGMOD + wTODS = 1)

Ranking with Uncertain Scoring Functions:
Semantics and Sensitivity Measures

Mohamed A. Soliman
∗

Greenplum
San Mateo, USA

mohamed.soliman@emc.com

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@uwaterloo.ca

Davide Martinenghi
Politecnico di Milano

Milano, Italy
davide.martinenghi@polimi.it

Marco Tagliasacchi
Politecnico di Milano

Milano, Italy
marco.tagliasacchi@polimi.it

ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID! rating! stars!

!"# !" #"

!$# $" %"

!%# &" $"

!&# %" !"

Rank By wR.rating+wH.stars!

wR+wH=1!

wR"
0! 0.167! 0.4! 0.571! 0.833! 1.0!

Join Results!

'(" '!" ')" '&" '%"

!)"
!("

!!"

!&"

!)"
!!"

!("

!&"

!!"
!)"

!("

!&"

!!"
!)"

!&"

!("

!!"
!&"

!)"

!("

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.
The order of rank join results depends on the chosen score

aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

A
3
2
1
4

B
3
1
2
4

C
1
3
2
4

D
1
3
4
2

E
1
4
3
2
wSIGMOD

Davide Martinenghi

Representative orderings

§ Finding a representative ranking:
– Most Probable Ordering:

– Optimal Rank Aggregation:
• Ranking with the minimum average distance to all other

rankings
– Common distances between rankings:

• Kendall tau: number of pairwise disagreements in the relative order
• Spearman’s footrule: sum of distances between the ranks of the

same item in the two rankings

31

Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN), computed as follows:

p(λN) =

�

w∈∆d−1,O w
❀ λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

✷

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
�τ2, τ3�, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

�

λr∈ΛN

D(λ,λr) · p(λr). ✷

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
�

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N�d/2�+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1
) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1
) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2
) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
❀ λ,

we have λK = λ̄K . ✷

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = �(0.2, 0.8)− (0.167, 0.833)� = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N) =
�

λ∈ΛN ,λK=λ̄K

p(λ). ✷

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.
Problem MPO requires processing orderings’ prefixes,

while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.

Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN), computed as follows:

p(λN) =

�

w∈∆d−1,O w
❀ λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

✷

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
�τ2, τ3�, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

�

λr∈ΛN

D(λ,λr) · p(λr). ✷

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
�

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N�d/2�+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1
) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1
) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2
) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
❀ λ,

we have λK = λ̄K . ✷

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = �(0.2, 0.8)− (0.167, 0.833)� = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N) =
�

λ∈ΛN ,λK=λ̄K

p(λ). ✷

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.
Problem MPO requires processing orderings’ prefixes,

while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.

Davide Martinenghi

Example of MPO and ORA

§ For K=1, the MPO is <1>

§ For K=2, the MPO is <1,3>

§ ORA is C both for Kendall tau and footrule

32

Candidate SSIGMOD SVLDB

1 7 5
2 2 6
3 4 7
4 5 2

Ranking with Uncertain Scoring Functions:
Semantics and Sensitivity Measures

Mohamed A. Soliman
∗

Greenplum
San Mateo, USA

mohamed.soliman@emc.com

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@uwaterloo.ca

Davide Martinenghi
Politecnico di Milano

Milano, Italy
davide.martinenghi@polimi.it

Marco Tagliasacchi
Politecnico di Milano

Milano, Italy
marco.tagliasacchi@polimi.it

ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID! rating! stars!

!"# !" #"

!$# $" %"

!%# &" $"

!&# %" !"

Rank By wR.rating+wH.stars!

wR+wH=1!

wR"
0! 0.167! 0.4! 0.571! 0.833! 1.0!

Join Results!

'(" '!" ')" '&" '%"

!)"
!("

!!"

!&"

!)"
!!"

!("

!&"

!!"
!)"

!("

!&"

!!"
!)"

!&"

!("

!!"
!&"

!)"

!("

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.
The order of rank join results depends on the chosen score

aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

A
3
2
1
4

B
3
1
2
4

C
1
3
2
4

D
1
3
4
2

E
1
4
3
2

Davide Martinenghi

Computing representative rankings

§ Naïve approach:
1. Enumerate possible weight vectors
2. Find the distinct rankings induced by these

vectors
3. Pick the required representative ranking

§ This is:
– Highly inefficient
– Inaccurate, since it requires discretizing the

weights space

§ An incremental approach: tree-based
representation that is incrementally
constructed by extending prefixes of rankings
– Appropriate for MPO

33

Davide Martinenghi

Results in 2D and uncertain scoring function 34

Davide Martinenghi

Incremental construction of the possible
rankings 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 3

0
0

3
0.29

4
0.19

1
0.044

6
0.14

7
0.0075

7
0.099

1
0.031

4
0.035

5
0.033

7
0.53

3
0.12

5
0.035

10
0.087

8
0.31

10
0.31

10
0.099

3
0.02

8
0.079

8
0.18

7
0.18

10
0.18

Davide Martinenghi

Conclusions and future work

§ Rank aggregation: merging rankings into a consensus list

§ Rank join
– Extension to heterogeneous (joinable) relations
– Requires sorted access to data (or even random access)

[TKDE 201X]
– Efficiency measured as total depth (aiming at instance optimality)

§ Extensions
– In proximity r. j. objects are in a vector space affecting the score

[VLDB 2010] [TODS 2012]
– With uncertain scoring, we look for representative rankings

[SIGMOD 2011] [FET proposal, 2nd round]
– Diversification of results (not discussed in this talk)

[SIGMOD 2012]

§ Future work
– Use human computing to reduce uncertainty: what is the most

promising question to ask a human so as to crystallize the MPO?

36

Davide Martinenghi

As good as it gets
§ “Where can I attend an interesting conference in my field close to a

sunny beach?”

37
[Braga, Ceri, Daniel, Martinenghi, VLDB 2008]

Davide Martinenghi

 THANK YOU!

38

Davide Martinenghi

v1

v2

v3

v4

x1

v1

v2

v3

v4

x1

Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access

44

Davide Martinenghi

v1

v2

v3

v4

v5

v6

x1

x2

v1

v2

v3

v4

v5

v6

x1

x2

Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access

45

Davide Martinenghi

v1

v2

v3

v4

v5

v6

v7

v8

x1

x2x3
v1

v2

v3

v4

v5

v6

v7

v8

x1

x2x3

Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access

46

Davide Martinenghi

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

x1

x2x3

x4

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

x1

x2x3

x4

Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access

47

Davide Martinenghi

Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access

48

v1

v2

v3

v4

v5

v6

v7

v8

v9v10

v11

v12

x1

x2x3

x4

x5

v1

v2

v3

v4

v5

v6

v7

v8

v9v10

v11

v12

x1

x2x3

x4

x5

y51

y52

y53

Davide Martinenghi

Main References
Historical papers
§ Jean-Charles de Borda

Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, Paris 1781

§ Nicolas de Condorcet
Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785

§ Kenneth J. Arrow
A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328–346, 1950

Rank aggregation and ranking queries
§ Ronald Fagin, Ravi Kumar, D. Sivakumar

Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312

§ Ronald Fagin
Combining Fuzzy Information from Multiple Systems. PODS 1996: 216-226

§ Ronald Fagin
Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10

§ Ronald Fagin, Amnon Lotem, Moni Naor
Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines and k-Skybands
§ Stephan Börzsönyi, Donald Kossmann, Konrad Stocker

The Skyline Operator. ICDE 2001: 421-430

§ Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang
Skyline with Presorting. ICDE 2003: 717-719

§ Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger
Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Davide Martinenghi

Main References
Extensions of skylines: flexible skylines, ORD/ORU
§ Paolo Ciaccia, Davide Martinenghi

Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)

§ Paolo Ciaccia, Davide Martinenghi
FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

Extensions of ranking queries: uncertainty, proximity, diversity
§ Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi

Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011: 805-816

§ Davide Martinenghi, Marco Tagliasacchi
Proximity Rank Join. PVLDB 3(1): 352-363 (2010)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi
Top-k bounded diversification. SIGMOD Conference 2012: 421-432

§ Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Nørvåg
Reverse top-k queries. ICDE 2010: 365-376

§ Davide Martinenghi, Marco Tagliasacchi:
Cost-Aware Rank Join with Random and Sorted Access. IEEE Trans. Knowl. Data Eng. 24(12): 2143-2155 (2012)

§ Davide Martinenghi, Marco Tagliasacchi:
Proximity measures for rank join. ACM Trans. Database Syst. 37(1): 2:1-2:46 (2012)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Efficient Diversification of Top-k Queries over Bounded Regions. SEBD 2012: 139-146

§ Ilio Catallo, Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Top-k diversity queries over bounded regions. ACM Trans. Database Syst. 38(2): 10 (2013)

Davide Martinenghi

Main References
Web Access
§ Daniele Braga, Stefano Ceri, Florian Daniel, Davide Martinenghi:

Optimization of multi-domain queries on the web. Proc. VLDB Endow. 1(1): 562-573 (2008)

§ Andrea Calì, Davide Martinenghi:
Conjunctive Query Containment under Access Limitations. ER 2008: 326-340

§ Andrea Calì, Davide Martinenghi:
Querying Data under Access Limitations. ICDE 2008: 50-59

§ Andrea Calì, Diego Calvanese, Davide Martinenghi:
Dynamic Query Optimization under Access Limitations and Dependencies. J. Univers. Comput. Sci. 15(1): 33-62 (2009)

§ Andrea Calì, Davide Martinenghi:
Optimizing Query Processing for the Hidden Web. APWeb 2010: 397

§ Andrea Calì, Davide Martinenghi:
Querying the deep web. EDBT 2010: 724-727

51

