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My main research areas

§ Data Integrity Checking
– Integrity constraints are properties that represent the legal states 

of a database
– How to best preserve full satisfaction of constraints in the face of 

updates? (incremental integrity maintenance)
– What to do when we update a database that already violates 

some constraints? (inconsistency-tolerant integrity checking)

§ Query Answering over the Web
– How to answer queries over data behind forms (Deep Web)? 

(query answering under access limitations)
– Lots of distinctive (but often implicit) aspects of data on the Web

• recency
• incompleteness of information
• different levels of granularity in the data
• uncertainty
• provenance

§ Ranking queries (this talk)
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Outline

§ Ranking queries

§ Rank aggregation
– Based on position
– Aggregation functions

§ Ranking in the real world
– Joins
– Proximity
– Uncertainty
– Diversity

§ Future directions
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Ranking queries

§ Main idea: focus on the best query answers according to 
some criterion, without computing the full result
– A.k.a. “top-k” queries

§ Main applications:
– Combination of user preferences expressed according to various 

criteria
• Example: ranking restaurants by combining criteria about 

culinary preference, driving distance, stars, …
– Nearest neighbor problem (e.g., similarity search)

• Given a database D of n points in some metric space, and a 
query q in the same space, find the point (or the k points) in 
D closest to q

– Search computing
• “Where can I attend an interesting conference in my field 

close to a sunny beach?”
– …
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RANK BY 0.4/h.price + 0.4*r.rating + 0.2*r.hasMusic

LIMIT 5

Ranking queries: example
SELECT h.neighborhood, h.hid, r.rid

FROM HotelsNY h, RestaurantsNY r

WHERE h.neighborhood = r.neighborhood

Neighborhood Hid Rid
West Village
Midtown East
Chelsea
Midtown East
Midtown East
Hell’s Kitchen
Midtown West
Upper East Side
Harlem
Tribeca

H89
H248
H427
H248
H597
H662
H141
H978
H355
H381

R585
R197
R572
R346
R197
R223
R276
R137
R49
R938

•   •   • •   •   • •   •   •

Neighborhood Hid Rid
East Village
Gramercy
Midtown West
Hell’s Kitchen
Upper West Side

H346
H872
H141
H662
H51

R738
R822
R276
R498
R394

Full Join Results Rank Join Results
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Rank aggregation (your problem)

§ Rank aggregation is the problem of combining several 
ranked lists of objects in a robust way to produce a single 
consensus ranking of the objects

§ What is the overall ranking?

§ Who is the best candidate?

6

Candidate
1
2
3
4
5

Candidate
2
4
5
1
3

Candidate
4
2
5
3
1

Candidate
5
1
3
4
2

Candidate
3
5
1
2
4

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

[Fagin, PODS 1996]
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Rank aggregation and scores

§ Metric approaches are preferred over axiomatic 
approaches (Arrow’s impossibility theorem)

§ When scores are opaque, the goal is to find a new 
ranking R whose total distance to the initial rankings R1, 
…, Rn is minimized
– For several metrics, NP-hard to solve exactly

• E.g., the Kendall tau distance K(R1, R2), defined as the 
number of exchanges in a bubble sort to convert R1 to Rn

– May admit efficient approximations (e.g., median ranking)

§ When scores are visible, the consensus ranking is 
determined by an aggregation function
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Rank aggregation – example with scores

§ Aggregation function:

Score(cand) = 0.30 s1 + 0.25 s2 + 0.20 s3 + 0.15 s4 + 0.10 s5

§ What is the overall ranking?

§ Who is the best candidate?

8

Cand s1

1 .9
2 .7
3 .5
4 .3
5 .1

Cand s2

2 .65
1 .6
5 .55
4 .5
3 .45

Cand s3

4 .99
2 .97
5 .95
3 .93
1 .91

Cand s4

5 .6
1 .5
3 .4
4 .3
2 .2

Cand s5

3 .8
1 .7
5 .65
2 .63
4 .62

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5
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§ Aggregation function:
Score(cand) = wSIGMOD s1 + wVLDB s2 + wICDE s3 + wTODS s4 + wTKDE s5

§ What weights should I convince you to use so that I 
become the best candidate?
– (point of view of the seller/product manufacturer)

Reverse top-k queries (my problem) 9

Cand s1

1 2
4 2
2 0
3 0
5 0

Cand s2

4 4
1 2
2 0
3 0
5 0

Cand s3

1 1
2 1
4 1
3 0
5 0

Cand s4

1 1
5 0
2 0
3 0
4 0

Cand s5

1 2
4 1
2 0
3 0
5 0

SIGMOD VLDB ICDE TODS TKDE

[Vlachou et al., ICDE 2010]

Full papers in the top database venues in the last 5 years
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Rank aggregation in data-centric contexts

§ Traditionally, two ways of accessing data:
– Sorted access: access, one by one, the next element (together 

with its score) in a ranked list, starting from top
– Random access: given an element (id), retrieve its score 

(position in the ranked list or other associated value)

§ Minimizing the accesses when determining the top k 
items
– A cost is incurred for each item read from a ranking
– Can I improve on the current best aggregate score if I read more 

items?
– Thresholds are used to ensure that no further item needs to be 

read
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§ Almost relational model, with a lot of “quirks”
– Web interfaces with input and output fields (access patterns)
– Results are typically ranked

tripAdvisor(Cityi, InDatei, OutDatei, Personsi, Nameo, Popularityo,ranked)
–  Many other needs: joins, dirty data,
 deduplication, diversification,
 uncertainty, incompleteness, 
 recency, paging, access costs…

Ranking in the real world 11
[Calì & Martinenghi, ICDE 2008] [Martinenghi & Tagliasacchi, TKDE 201X] 
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§ Total depth (aka sumDepths) is the primary cost metric

§ Early termination: no algorithm can be optimal
– But an algorithm can be instance optimal, i.e., the best possible 

algorithm (to within a constant factor) on every input instance

The Rank Join Problem

Rank Join

R1 R2

k
S

Descending 
score bound

Top k join 
results

depth 2depth 3

12
[Ilyas et al., VLDB 2003]Computing the k join results with 

highest scores according to some 
aggregation function S
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Proximity Rank Join: example

§ A smartphone user wants to organize the evening by 
finding:

– a restaurant, a movie theater and a hotel that are 
• nearby
• close to each other
• recommended in terms of price, user rating, and number of stars

13
[Martinenghi & Tagliasacchi, VLDB 2010]
[Martinenghi & Tagliasacchi, TODS 2012]
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Proximity rank join problems

§ Looking for combinations of heterogeneous objects

§ Each object is equipped with
– A score
– A real-valued feature vector

§ The aggregation function assigns a score to a 
combination based on
– The individual scores
– The proximity to the query vector
– Their mutual proximity

§ Objects can also be retrieved by distance from the query

14

Hotel Category Location
Villa D’Este 5 [45.62 N, 9.32 E]
Metropole Suisse 4 [45.65 N, 9.33 E]
Palace Hotel 4 [45.64 N, 9.31 E]
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Proximity Rank Join 15
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Proximity Rank Join 16
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Distance-based access 17
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Distance-based access 18
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Distance-based access 19
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Distance-based access 20
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Distance-based access 21
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Distance-based access 22
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Distance-based access 23



Davide Martinenghi

Proximity rank join problems

§ Broad applicability

– Information retrieval
• E.g. finding similar documents in different collections given a set of 

keywords
•  

– Multimedia databases
• E.g. requesting similar images from different repositories given a 

sample image

– Bioinformatics
• E.g. discovering orthologous genes from different organisms given a 

target annotation profile
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Bounding scheme

§ Stopping criterion based on a bounding scheme:

– What is the largest aggregate score of a possible combination 
formed with at least one unseen tuple?

– We stop when we have k combinations whose score exceeds 
the bound

§ Tight bound (an actually achievable bound)
– Using tight bounds guarantees instance optimality
– Can be computed efficiently when using Euclidean distance
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A:11

Table II. Partial combinations formed with
the tuples of Table I.
M τ ∈ PC(M) t(τ) tM� �� -19.2 -19.2

{1} τ(1)1 -20.6 -19.2
τ(2)1 -19.2

{2} τ(1)2 -12.8 -12.8
τ(2)2 -19.4

{3} τ(1)3 -12.8 -12.8
τ(2)3 -20.1

{1,2}
τ(1)1 × τ(1)2 -16.0

-13.5τ(1)1 × τ(2)2 -24.0
τ(2)1 × τ(1)2 -13.5
τ(2)1 × τ(2)2 -20.4

{1,3}
τ(1)1 × τ(1)3 -16.0

-13.5τ(1)1 × τ(2)3 -22.0
τ(2)1 × τ(1)3 -13.5
τ(2)1 × τ(2)3 -26.4

{2,3}
τ(1)2 × τ(1)3 -7.0

-7.0τ(1)2 × τ(2)3 -21.0
τ(2)2 × τ(1)3 -13.1
τ(2)2 × τ(2)3 -26.8

discussed for Algorithm 2, also if τ ′ has been flagged as dominated (line 6). In such a
case, the value of t(τ ′) is not recomputed. The dominance test is executed by checking
the condition in (14) immediately after computing the upper bound t(τ ′), whenever at
least K combinations have been formed (line 9).

ALGORITHM 3: updateBound(τi) distance-based case with dominance check
Input : last seen tuple τi = Ri[pi]; seen tuples Pj , j = 1, . . . , n, curr. values of t(⋅) for all

seen combinations
Output: Tight upper bound t

1 begin
2 t← −∞;
3 for M ⊂ {1, . . . , n} do
4 tM ← −∞;
5 for τ ′ ∈ PC(M) do
6 if τ ′ is not dominated then
7 if (i ∈M ∧ τ ′i = τi) ∨ i �∈M then
8 Compute t(τ ′) solving (9);
9 if �O� =K ∧ t(τ ′) ≤minω∈O S(ω) then

10 Flag τ ′ as dominated;
11 end
12 end
13 tM ←max{tM , t(τ ′)};
14 end
15 end
16 t =max{t, tM};
17 end
18 return t
19 end

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

The remaining n−m variables are lower bounded by the current distances from q, i.e.,
θi ≥ δi, m + 1, . . . , n. The upper bound t(τ) is obtained by solving the following problem

max. ∑m
i=1ws ln(σ(τi)) +∑n

i=m+1ws ln(σmax
i ) −∑n

i=1wqθ
2
i −∑n

i=1wµ(θi − 1
n ∑n

j=1 θj)2
s.t. θi = P(x(τi)), i = 1, . . . ,m

θi ≥ δi, i =m + 1, . . . , n (24)

In Appendix A.3 we show that (24) can be written as a convex quadratic program (QP)
with linear constraints, thus it can be efficiently solved using off-the-shelf solvers.
Let θ∗ = [θ∗1 , . . . , θ∗n]T denote the optimal solution of (24). The solution of the original
problem (17) is given by

y∗i = q + θ∗i ν − q
�ν − q� , i =m + 1, . . . , n (25)

i.e., the i-th variable is at distance θ∗i from the query q and on the ray that originates
from q and goes through ν.

Example 4.2. Assume Table I reports all the seen tuples. Thus, δ1 = 1, δ2 = 2√2 and
δ3 = 2

√
2. Solving (17) for the partial combination τ (1)2 gives y∗1 = [√2�2,√2�2]T and

y∗3 = [2,2]T (and t(τ (1)2 ) = −12.8), which lie along the ray from q to x(τ (1)2 ). Solving
(17) for τ (1)1 × τ (1)3 requires: i) computing the centroid of τ (1)1 × τ (1)3 (ν = [−0.5,0.25]T );
ii) computing the projections on the line from q to ν (θ1 = −0.22, θ3 = 1.34); iii) solving
(24) to obtain θ∗2 = 2√2; iv) computing y∗2 = [−2.53,1.26]T according to (25); v) computing
t(τ (1)1 × τ (1)3 ) = −16. Figure 3 shows that the optimal locations of the unseen tuples are,
in this case, at the minimum allowed distances, but this does not hold in general.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

τ (1)1

τ (2)1 τ (1)2

τ (2)2

τ (1)3

τ (2)3

q

Fig. 3. Solution of problem (17) with the tuples of Table I for: (i) partial combination τ(1)2 ; (ii) partial combi-
nation τ(1)1 ×τ(1)3 whose centroid is indicated by a black empty circle. The optimal locations of unseen tuples
are represented by empty circles collinear with the the centroid and the query.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Tight bound for Euclidean distance 26
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Uncertainty in rank join

§ Users are often unable to precisely specify the 
scoring function

§ Using trial-and-error or machine learning may be 
tedious and time consuming

§ Assumptions:
– Linear scoring function:
  S = w1s1 + w2s2 + … + wnsn
– User-defined weights w1, w2,…,wn  are:

• uncertain, and, w.l.o.g.,
• normalized to sum up to 1

§ [Part of a current FET proposal, second round]

27
[Soliman, Ilyas, Martinenghi, Tagliasacchi, SIGMOD 2011]
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Representing scoring functions on the simplex 28
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§ Each point on the simplex represents a possible 
scoring function

§ We assume that p(w) is uniform over the simplex
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Uncertain scoring

§ Uncertainty induces a probability distribution on a 
set of possible rankings 

§ Each ordering occurs with a probability

(weights in the simplex inducing that ranking)

§ When N is large, we usually focus on a prefix of 
length K<N of an ranking

29
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Example (our problem, again)

§ Top-k query
SELECT candidate, sSIGMOD, sTODS
FROM SIGMOD, TODS
RANK BY wSIGMOD sSIGMOD + wTODS sTODS
LIMIT 1

§ Results and possible rankings

30

Candidate SSIGMOD STODS

1 7 5
2 2 6
3 4 7
4 5 2

(wSIGMOD + wTODS = 1)
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ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.
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SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query
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Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.
The order of rank join results depends on the chosen score

aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

A
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B
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Representative orderings

§ Finding a representative ranking:
– Most Probable Ordering: 

– Optimal Rank Aggregation:
• Ranking with the minimum average distance to all other 

rankings
– Common distances between rankings:

• Kendall tau: number of pairwise disagreements in the relative order 
• Spearman’s footrule: sum of distances between the ranks of the 

same item in the two rankings

31

Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN ), computed as follows:

p(λN ) =

�

w∈∆d−1,O w
❀ λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

✷

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
�τ2, τ3�, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

�

λr∈ΛN

D(λ,λr) · p(λr). ✷

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
�

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N�d/2�+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1
) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1
) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2
) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
❀ λ,

we have λK = λ̄K . ✷

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = �(0.2, 0.8)− (0.167, 0.833)� = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N ) =
�

λ∈ΛN ,λK=λ̄K

p(λ). ✷

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.
Problem MPO requires processing orderings’ prefixes,

while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.

Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN ), computed as follows:

p(λN ) =

�

w∈∆d−1,O w
❀ λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

✷

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
�τ2, τ3�, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

�

λr∈ΛN

D(λ,λr) · p(λr). ✷

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
�

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N�d/2�+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1
) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1
) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2
) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
❀ λ,

we have λK = λ̄K . ✷

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = �(0.2, 0.8)− (0.167, 0.833)� = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
❀ λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N ) =
�

λ∈ΛN ,λK=λ̄K

p(λ). ✷

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.
Problem MPO requires processing orderings’ prefixes,

while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.
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Example of MPO and ORA

§ For K=1, the MPO is <1>

§ For K=2, the MPO is <1,3>

§ ORA is C both for Kendall tau and footrule 
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ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application
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SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query
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Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.
The order of rank join results depends on the chosen score

aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a
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Computing representative rankings

§ Naïve approach:
1. Enumerate possible weight vectors
2. Find the distinct rankings induced by these 

vectors
3. Pick the required representative ranking

§ This is:
– Highly inefficient
– Inaccurate, since it requires discretizing the 

weights space

§ An incremental approach: tree-based 
representation that is incrementally 
constructed by extending prefixes of rankings
– Appropriate for MPO
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Results in 2D and uncertain scoring function 34
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Incremental construction of the possible 
rankings 35
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Conclusions and future work

§ Rank aggregation: merging rankings into a consensus list

§ Rank join
– Extension to heterogeneous (joinable) relations
– Requires sorted access to data (or even random access)

[TKDE 201X]
– Efficiency measured as total depth (aiming at instance optimality)

§ Extensions
– In proximity r. j. objects are in a vector space affecting the score

[VLDB 2010] [TODS 2012]
– With uncertain scoring, we look for representative rankings

[SIGMOD 2011] [FET proposal, 2nd round]
– Diversification of results (not discussed in this talk)

[SIGMOD 2012]

§ Future work
– Use human computing to reduce uncertainty: what is the most 

promising question to ask a human so as to crystallize the MPO?

36
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As good as it gets
§ “Where can I attend an interesting conference in my field close to a 

sunny beach?”

37
[Braga, Ceri, Daniel, Martinenghi, VLDB 2008]
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  THANK YOU!
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Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access
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§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access
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Example of diversification

§ Inside red circumferences: explored region

§ Pink discs: objects retrieved by distance-based access
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