
Humans Fighting Uncertainty
in Top-K Scenarios
Davide Martinenghi
Joint work with I. Catallo, E. Ciceri, P. Fraternali, and M. Tagliasacchi

Rome, July 9, 2013

Search Computing

Summary

§ Rank aggregation and rank join

§ Uncertain scoring

§ Representative orderings

§ Reducing uncertainty through human workers

2

Search Computing

Ranking queries

§ Main idea: focus on the best query answers according to some
criterion, without computing the full result
• A.k.a. “top-k” queries

§ Main applications:
• Combination of user preferences expressed according to various

criteria
– Example: ranking restaurants by combining criteria about

culinary preference, driving distance, stars, …
• Nearest neighbor problem (e.g., similarity search)

– Given a database D of n points in some metric space, and a
query q in the same space, find the point (or the k points) in
D closest to q

• Search computing
– “Where can I attend an interesting conference in my field

close to a sunny beach?”
• …

3

Search Computing

RANK BY 0.4/h.price + 0.4*r.rating + 0.2*r.hasMusic

LIMIT 5

Ranking queries: example 4

SELECT h.neighborhood, h.hid, r.rid

FROM HotelsNY h, RestaurantsNY r

WHERE h.neighborhood = r.neighborhood

Neighborhood Hid Rid
West Village
Midtown East
Chelsea
Midtown East
Midtown East
Hell’s Kitchen
Midtown West
Upper East Side
Harlem
Tribeca

H89
H248
H427
H248
H597
H662
H141
H978
H355
H381

R585
R197
R572
R346
R197
R223
R276
R137
R49
R938

• • • • • • • • •

Neighborhood Hid Rid
East Village
Gramercy
Midtown West
Hell’s Kitchen
Upper West Side

H346
H872
H141
H662
H51

R738
R822
R276
R498
R394

Full Join Results Rank Join Results

Search Computing

Rank aggregation

§ Rank aggregation is the problem of combining several ranked
lists of objects in a robust way to produce a single consensus
ranking of the objects

§ What is the overall ranking?

§ Who is the best candidate?

5

Candidate
1
2
3
4
5

Candidate
2
4
5
1
3

Candidate
4
2
5
3
1

Candidate
5
1
3
4
2

Candidate
3
5
1
2
4

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

[Fagin, PODS 1996]

Search Computing

Rank aggregation and scores

§ Metric approaches are preferred over axiomatic approaches
(Arrow’s impossibility theorem)

§ When scores are opaque, the goal is to find a new ranking R
whose total distance to the initial rankings R1, …, Rn is
minimized
• For several metrics, NP-hard to solve exactly

– E.g., the Kendall tau distance K(R1, R2), defined as the
number of exchanges in a bubble sort to convert R1 to Rn

• May admit efficient approximations (e.g., median ranking)

§ When scores are visible, the consensus ranking is determined
by means of an aggregation function

6

Search Computing

Rank aggregation – example with scores

§ Aggregation function:

Score(cand) = 0.30 s1 + 0.25 s2 + 0.20 s3 + 0.15 s4 + 0.10 s5

§ What is the overall ranking?

§ Who is the best candidate?

7

Cand s1

1 .9
2 .7
3 .5
4 .3
5 .1

Cand s2

2 .65
1 .6
5 .55
4 .5
3 .45

Cand s3

4 .99
2 .97
5 .95
3 .93
1 .91

Cand s4

5 .6
1 .5
3 .4
4 .3
2 .2

Cand s5

3 .8
1 .7
5 .65
2 .63
4 .62

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

Search Computing

Reverse top-k queries

§ Aggregation function:

Score(cand) = w1 s1 + w2 s2 + w3 s3 + w4 s4 + w5 s5

§ What weights should I convince you to use so that my
preferred candidate becomes the best?
• (point of view of the seller/product manufacturer)

8

Cand s1

1 .9
2 .7
3 .5
4 .3
5 .1

Cand s2

2 .65
1 .6
5 .55
4 .5
3 .45

Cand s3

4 .99
2 .97
5 .95
3 .93
1 .91

Cand s4

5 .6
1 .5
3 .4
4 .3
2 .2

Cand s5

3 .8
1 .7
5 .65
2 .63
4 .62

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

[Vlachou et al., ICDE 2010]

Search Computing

Rank aggregation in data-centric contexts

§ Traditionally, two ways of accessing data:
• Sorted access: access, one by one, the next element (together

with its score) in a ranked list, starting from top
• Random access: given an element (id), retrieve its score

(position in the ranked list or other associated value)

§ Minimizing the accesses when determining the top k items
• A cost is incurred for each item read from a ranking
• Can I improve on the current best aggregate score if I read more

items?
• Thresholds are used to ensure that no further item needs to be

read

9

Search Computing

Ranking in the real world

§ Almost relational model, with a lot of “quirks”
• Web interfaces with input and output fields (access patterns)
• Results are typically ranked

tripAdvisor(Cityi, InDatei, OutDatei, Personsi, Nameo, Popularityo,ranked)
• Many other needs: joins, dirty data,
 deduplication, diversification,
 uncertainty, incompleteness,
 recency, paging, access costs…

10
[Calì & Martinenghi, ICDE 2008] [Martinenghi & Tagliasacchi, TKDE 2012]

Search Computing

Uncertain scoring

§ Users are often unable to precisely specify
the scoring function

§ Objects may have imprecise scores, e.g.,
defined over intervals

– E.g., apartment rent [$200-$250]

§ Using trial-and-error or machine learning
may be tedious and time consuming

§ Even when the function is known, it is
crucial to analyze the sensitivity of the
computed ordering wrt. changes in the
function

11
[Soliman & Ilyas, ICDE 2009], [Soliman et al., SIGMOD 2011]

Search Computing

Uncertain scoring

§ Assumptions:
• Linear scoring function: S = w1s1 + … + wnsn
• User-defined weights w1,…,wn are uncertain,

and, w.l.o.g., normalized to sum up to 1

§ Each point on the simplex represents a possible
scoring function

12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w1

w
2

w̄

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

w1

w̄

w2

w
3

Search Computing

§ Top-k query:

• Results and possible orderings:

Example 13

Ranking with Uncertain Scoring Functions:
Semantics and Sensitivity Measures

Mohamed A. Soliman
∗

Greenplum
San Mateo, USA

mohamed.soliman@emc.com

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@uwaterloo.ca

Davide Martinenghi
Politecnico di Milano

Milano, Italy
davide.martinenghi@polimi.it

Marco Tagliasacchi
Politecnico di Milano

Milano, Italy
marco.tagliasacchi@polimi.it

ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID� rating� stars�

��� �� 	�

���
� ��

��� ��
�

��� �� ��

Rank By wR.rating+wH.stars�

wR+wH=1�

wR�
0� 0.167� 0.4� 0.571� 0.833� 1.0�

Join Results�

��� ��� ��� ��� ���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.

The order of rank join results depends on the chosen score
aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

Ranking with Uncertain Scoring Functions:
Semantics and Sensitivity Measures

Mohamed A. Soliman
∗

Greenplum
San Mateo, USA

mohamed.soliman@emc.com

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@uwaterloo.ca

Davide Martinenghi
Politecnico di Milano

Milano, Italy
davide.martinenghi@polimi.it

Marco Tagliasacchi
Politecnico di Milano

Milano, Italy
marco.tagliasacchi@polimi.it

ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID� rating� stars�

��� �� 	�

���
� ��

��� ��
�

��� �� ��

Rank By wR.rating+wH.stars�

wR+wH=1�

wR�
0� 0.167� 0.4� 0.571� 0.833� 1.0�

Join Results�

��� ��� ��� ��� ���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.
The order of rank join results depends on the chosen score

aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

Search Computing

Representative ordering

§ Both value uncertainty and weight
uncertainty determine score uncertainty
• This induces a partial order over objects
• we have a space of possible orderings

§ We focus on a representative of the space

§ An example is the Most Probable Ordering

§ Other definitions of representative
ordering exist, e.g., the Optimal Rank
Aggregation

14

Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN), computed as follows:

p(λN) =

∫

w∈∆d−1,O w
! λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

!

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
〈τ2, τ3〉, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

∑

λr∈ΛN

D(λ,λr) · p(λr). !

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
∑

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N#d/2$+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1
) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1
) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2
) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
" λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
" λ,

we have λK = λ̄K . !

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = ‖(0.2, 0.8)− (0.167, 0.833)‖ = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
" λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N) =
∑

λ∈ΛN ,λK=λ̄K

p(λ). !

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.

Problem MPO requires processing orderings’ prefixes,
while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.

Search Computing

Example of MPO

§ For K=2, the MPO is <τ2, τ3>
• under the assumption of uniform

probability distribution

15

Ranking with Uncertain Scoring Functions:
Semantics and Sensitivity Measures

Mohamed A. Soliman
∗

Greenplum
San Mateo, USA

mohamed.soliman@emc.com

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@uwaterloo.ca

Davide Martinenghi
Politecnico di Milano

Milano, Italy
davide.martinenghi@polimi.it

Marco Tagliasacchi
Politecnico di Milano

Milano, Italy
marco.tagliasacchi@polimi.it

ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application

∗Work has been done while the author was with University
of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID� rating� stars�

��� �� 	�

���
� ��

��� ��
�

��� �� ��

Rank By wR.rating+wH.stars�

wR+wH=1�

wR�
0� 0.167� 0.4� 0.571� 0.833� 1.0�

Join Results�

��� ��� ��� ��� ���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

���
���

���

���

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.

The order of rank join results depends on the chosen score
aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a

Search Computing

Shortcomings of representative orderings

§ Complex to compute:
• exponential in the number of dimensions

(weights)
• in some cases, NP-hard already in 3D

§ MPOs may fail to be truly representative:
• often, only slightly better than the second

most probable ordering
• how stable is the ordering? would it remain the

same after a slight perturbation of the
weights?

16

Search Computing

Points corresponding to join results for d=2 17

Search Computing

Construction of tree of possible orderings 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 3

0
0

3
0.29

4
0.19

1
0.044

6
0.14

7
0.0075

7
0.099

1
0.031

4
0.035

5
0.033

7
0.53

3
0.12

5
0.035

10
0.087

8
0.31

10
0.31

10
0.099

3
0.02

8
0.079

8
0.18

7
0.18

10
0.18

Search Computing

Asking humans

§ Question answering:
• How to use human workers to reduce the

amount of uncertainty?
• Which questions to pose?

§ Task assignment:
• Once the tasks are defined, which humans to

ask?

19

Search Computing

Uncertainty reduction via question answering

§ When several orderings are possible, the space of
possible orderings compatible with the score values
can be determined and represented as a tree

§ Each node is associated with a probability

Uncertain attribute
value: multiple

values are
possible

Several orderings
are possible

Each path in the tree
represents a possible
ordering

t1

t2

t3

score

score

score

score

[Li & Deshpande, VLDB 2010]

Search Computing

Uncertainty reduction via question answering

Reduce uncertainty
in the space of

possible orderings

Determining the best
ordering

REQUIRES TO

Prune paths

Search Computing

Solution: crowdsourcing

User
knowledge

Questions

1) Resolve conflicts (i.e.,
ambiguities on the
ordering of two or

more objects)

2) Refine score intervals

Prune paths

Reduce uncertainty
in the space of

possible orderings

Crowd

Search Computing

Showcase: tree construction

t1

t2

t3

t3

t1

t1t2

t2

0.05

0.15

0.20

0.25

0.30

0.35

0.10

f(s)

s

f1 f2

f3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Computing

Showcase: question answering

t1

t2

t3

t3

t1

t1t2

t2

t1

t2

t3

t3

t1

t2

t3

t1

t2
t1 ≺ t2?

“Y
es”

“No”

Search Computing

Open issue: question types

§ Questions
• Define the types of possible questions
• Define how to measure uncertainty in the space of

possible orderings, so as to check its reduction as
questions are answered

§ Measuring uncertainty
• Shannon’s entropy (or some discounted version thereof)
• Distance from a representative ordering
• …

§ Uncertainty reduction
• Devise the optimal set/sequence of Q questions that can

be posed to users

Search Computing

First solution: Online approach

t1

t2

t3

t3

t1

t1t2

t2
Select the most

promising question q1
Ask q1

AnswerModify tree

t1

t2

t3

t3

t1

t2

Select the most
promising question q2
(taking into account

previous tree updates)

Ask q2

1

2

3

…

Search Computing

Second solution: Offline approach

t1

t2

t3

t3

t1

t1t2

t2
Select the Q most promising

questions <q1…qQ>

1

AnswerModify tree

t1

t2

t3

t3

t1

t2

Ask qi

2

For each selected qi

Search Computing

Comparison

Online Approach Offline approach
PROS Optimized with respect

to the actual system
state

Fast user interaction
(questions are chosen
before interacting with
the user)

CONS Slow user interaction
(questions are evaluated
at each step)

Questions are chosen
according to the initial
system state (+some
clues about the future
gains), not according to
the system state at each
step

Search Computing

Crowdsourcing marketplaces

§ Crowdsourcing marketplaces: Internet
marketplaces that enable requesters to
hire crowd workers to perform tasks

Search Computing

Task assignment: Motivations

§ It is often the case that a worker does not have the
appropriate knowledge for annotating all the data,
even for a particular domain

§ Each worker is characterized by different parameters
we should take into consideration

§ Examples:
• Expertise
• Geocultural information
• Past work history

§ Problem: How to associate the most suitable task
with the most appropriate worker(s)?

30

[Raykar et al., J. of Machine Learning Research 2010]

Search Computing

§ Task assignment: identify the best assignment
configuration between workers and tasks, given an upper
bound on the number of assignments or a delay constraint
(i.e., who should work on what?)

§ Expressed by means of a bipartite assignment graph

§ Constrained maximization problem (maximize assignment
quality over all feasible task-annotator assignments)

Tasks Workers

31Task assignment: Definition

Search Computing

Objectives and parameters

§ Parameters of interest:
• Worker model: accuracy (probability of correctly

solving the task), fatigue decay, cost, correlation
• Task model: uncertainty

§ Optimal allocation
• Possible objectives:

– Achieving maximum quality given a target
budget

– Ensuring that tasks finish before a target
deadline

32

Search Computing

Execution pipeline of a task assignment policy 33

Task assignment

Budget Deadlines

Workers’ contribution
on the tasks

Aggregation of the
contributions

Workers

Tasks
Completed tasks

Search Computing

Experimental assessment

§ Parameters of interest:
• Tasks’ quality and completion rate w.r.t. to workers’

accuracy distributions
• Optimal budget B* w.r.t. expected number of workers

§ Experimental assessment:
• On publicly available data sets (e.g., UCI repository)
• On real crowds (e.g., MicroTask)

34

Search Computing

Acknowledgments:
CUbRIK Project

§ CUbRIK is a research
project financed by the
European Union

§ Goals:
• Advance the

architecture of
multimedia search

• Exploit the human contribution in
multimedia search

• Use open-source
components provided
by the community

• Start up a search
business ecosystem

§ http://www.cubrikproject.
eu/

35

Search Computing

Main References
Core contributions

§ Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Crowdsourcing for Top-K Query Processing over Uncertain Data. IEEE Trans. Knowl. Data Eng. 28(1): 41-53
(2016)

§ Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Humans Fighting Uncertainty: Crowdsourcing for Top-K Query Processing. SEBD 2016: 78-85

§ Ilio Catallo, Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Top-k diversity queries over bounded regions. ACM Trans. Database Syst. 38(2): 10 (2013)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Top-k bounded diversification. SIGMOD Conference 2012: 421-432

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Efficient Diversification of Top-k Queries over Bounded Regions. SEBD 2012: 139-146

Crowdsourcing applications

§ Carlo Bernaschina, Ilio Catallo, Piero Fraternali, Davide Martinenghi:
On the Role of Task Design in Crowdsourcing Campaigns. HCOMP 2015: 4-5

§ Eleonora Ciceri, Ilio Catallo, Davide Martinenghi, Piero Fraternali:
When Food Matters: Identifying Food-related Events on Twitter. KDWeb 2015: 65-76

§ Carlo Bernaschina, Ilio Catallo, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi:
Champagne: A Web Tool for the Execution of Crowdsourcing Campaigns. WWW (Companion Volume) 2015:
171-174

§ Carlo Bernaschina, Piero Fraternali, Luca Galli, Davide Martinenghi, Marco Tagliasacchi:
Robust aggregation of GWAP tracks for local image annotation. ICMR 2014: 403

§ Babak Loni et al.:
Fashion-focused creative commons social dataset. MMSys 2013: 72-77

Search Computing

Main References
More crowdsourcing applications

§ Luca Galli, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi, Jasminko Novak:
A Draw-and-Guess Game to Segment Images. SocialCom/PASSAT 2012: 914-917

§ Alessandro Bozzon et al.:
A Framework for Crowdsourced Multimedia Processing and Querying. CrowdSearch 2012: 42-47

§ Piero Fraternali et al:
The CUBRIK project: human-enhanced time-aware multimedia search. WWW (Companion Volume) 2012:
259-262

