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Buzzwords, languages, and tools

• …but how to get the best results out of the data?
• What does “best” even mean?
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A general concern:
multi-objective optimization

• Simultaneous optimization of different criteria
– E.g., different attributes of objects in a dataset

§ A general problem formulation:
– Given N objects described by d attributes
– Find the best k objects
• wrt some notion of “goodness”

• Relevant in many applications



Application: multi-criteria queries
– Example: ranking hotels by combining criteria 

about available facilities, driving distance, stars, …



Application: k-nearest neighbors
• (e.g., similarity search)

– Given N points in some metric (d-dimensional) space, and a 
query point q in the same space, find the k points closest to q

– Used for classification in Machine Learning



Application: caching
• Select the objects (memory cells, pages, files, ...) that are 

most likely to be accessed soon to minimize the miss rate 
among a very large set of N objects

• Each such object is described by d different attributes, each 
providing an estimate of the likelihood of reuse 

• Goal:
– What are the most promising k objects to be retained/brought to 

main memory so as to minimize the miss rate?



Many more applications

• Candidate hiring
• Sports ranking, university ranking, …
• Recommender systems
• Feature selection
• Ensemble learning
• …
• Essential aspect in (Big) Data Preparation
– For subsequent use in, e.g., ML…



Outline

• Historical perspective
• Classical approaches
– Top-k queries
– Skyline queries

• New approaches
– Hybridization of skyline and top-k queries
– Uncertainty in top-k queries
– Balance in top-k queries

• Outlook



  

Historical perspective



Rank aggregation

§ Goal: combining several ranked lists of objects 
into a single consensus ranking of the objects

[Borda, 1770][Marquis de Condorcet, 1785][Llull, 13th century]

Jean-Charles de Borda Ramon LlullMarie Jean Antoine Nicolas de Caritat,
Marquis de Condorcet



Rank aggregation
• A problem from social choice theory
• Given: N candidates, d voters

– No visible score assigned to candidates, only rank

• What is the overall ranking according to all the Voters?
• Who wins? (top-k candidates, with k=1)
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Classical proposals

• Borda’s proposal
– n-th place à n points of penalty
– winner (C): lowest overall penalty

• Condorcet’s proposal:
– winner (A): defeats everyone in 

pairwise majority rule election

1 2 3 4 5 6 7 8 9 10

A A A A A A C C C C

C C C C C C B B B B

B B B B B B A A A A

A

B C

Borda scores:
A: 1x6+3x4 = 18
B: 3x6+2x4 = 26
C: 2x6+1x4 = 16

10 voters, 3 candidates



Condorcet’s paradox

• A winner may not exist
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More paradoxes

Axioms for aggregation may not work out:
Arrow’s paradox: no rank-order electoral system can be 
designed that always satisfies reasonable "fairness" criteria:

– No dictatorship (nobody determines, alone, the group’s 
preference)

– If all prefer X to Y, then the group prefers X to Y
– If, for all voters, the preference between X and Y is unchanged, 

then the group preference between X and Y is unchanged

[Arrow, 1950]

Perfect 
democracy is 
unattainable!

Kenneth Arrow



  Ranking queries
(a.k.a. top-k queries)



Top-k queries

• Focus on the best k out of N items
– Best = most important/interesting/relevant/… 

• Items described by (d) numerical attributes
– not just the rank

• Preferences through a scoring function
– assigns an overall score for ranking tuples
– E.g., S(t) = t.Points + t.Rebounds



Top-k queries in SQL

SELECT *
FROM NBA_STATS
ORDER BY Points + Rebounds
LIMIT 5

Player Points Rebounds …

Antetokounmpo 28.1 11.0 …

Embiid 28.5 10.6 …

Jokić 26.4 10.6 …

Dončić 27.7 8.0 …

Towns 24.8 10.6 …



Top-k queries in SQL
• Standard in SQL since 2008

SELECT *
FROM NBA_STATS
ORDER BY Points + Rebounds
FETCH FIRST 5 ROWS ONLY

Player Points Rebounds …

Antetokounmpo 28.1 11.0 …

Embiid 28.5 10.6 …

Jokić 26.4 10.6 …

Dončić 27.7 8.0 …

Towns 24.8 10.6 …

• If input already sorted: O(k)
• Else perform in-memory sort 

(through a heap): O(N log k)
• Better: O(N + k log k)



Top-k join queries in SQL
• Generally, many relations may be involved, e.g.,
   SELECT *
   FROM RESTAURANTS R, HOTELS H
   WHERE R.City = H.City
   ORDER BY R.Price + H.Price
   FETCH FIRST 2 ROWS ONLY 

• Many algorithms focus on top-k 1-1 join queries
– All joins on a common key attribute
– Practically relevant in two main scenarios:

• There is an index for retrieving tuples according to each preference
• The relation is vertically distributed (the “middleware” scenario)



Threshold Algorithm (TA)

• TA is not strictly optimal, but cannot be beaten by an 
arbitrarily large factor (instance optimality)

• The authors of TA received the Gödel prize in 2014 for 
the design of innovative algorithms

Input: integer k, a monotone function S combining ranked lists R1, …, Rd
Output: the top k <object, score> pairs 

1. Descend in parallel in each list Ri
2. For each found object o, extract its score sj in the other lists Rj
3. Compute score S(s1, …, sd). If top k so far, remember o
4. Threshold T=S(L1, …, Ld) where Li is the last score seen for Ri 
5. If the score of the k-th object is worse than T, go to step 1
6. Return the current top-k objects

[Fagin, Lotem, Naor, PODS 2001]



• Query: hotels with best cleanliness and rating
– Scoring function: 0.5*cleanliness+0.5*rating

Hotels Cleanliness Hotels Rating

Ibis .92 Crillon .9

Etap .91 Novotel .9

Novotel .85 Sheraton .8

Mercure .85 Hilton .7

Hilton .825 Ibis .7

Sheraton .8 Ritz .7

Crillon .75 Lutetia .6

… …

Top 2 Score

Threshold
value: T = ??
point: t =(??,??)



• Query: hotels with best cleanliness and rating
– Scoring function: 0.5*cleanliness+0.5*rating

• Strategy:
– Make one sorted access at a time in each list
– Then make a random access for each new hotel

Hotels Cleanliness Hotels Rating

Ibis .92 Crillon .9

Etap .91 Novotel .9

Novotel .85 Sheraton .8

Mercure .85 Hilton .7

Hilton .825 Ibis .7

Sheraton .8 Ritz .7

Crillon .75 Lutetia .6

… …

Top 2 Score

Crillon .825

Ibis .81

Threshold
value: T = .91
point: t =(.92,.9)



• Query: hotels with best cleanliness and rating
– Scoring function: 0.5*cleanliness+0.5*rating

• Strategy:
– Make one sorted access at a time in each list
– Then make a random access for each new hotel

Hotels Cleanliness Hotels Rating

Ibis .92 Crillon .9

Etap .91 Novotel .9

Novotel .85 Sheraton .8

Mercure .85 Hilton .7

Hilton .825 Ibis .7

Sheraton .8 Ritz .7

Crillon .75 Lutetia .6

… …

Top 2 Score

Novotel .875

Crillon .825

Threshold
value: T = .905
point: t =(.91,.9)



• Query: hotels with best cleanliness and rating
– Scoring function: 0.5*cleanliness+0.5*rating

• Strategy:
– Stop when the score of the k-th hotel is no worse than the 

threshold 

Hotels Cleanliness Hotels Rating

Ibis .92 Crillon .9

Etap .91 Novotel .9

Novotel .85 Sheraton .8

Mercure .85 Hilton .7

Hilton .825 Ibis .7

Sheraton .8 Ritz .7

Crillon .75 Lutetia .6

… …

Top 2 Score

Novotel .875

Crillon .825

Threshold
value: T = .825
point: t =(.85,.8)



Why does TA work?
•  τ is the threshold point
• TA stops when the yellow 

region (fully seen points) 
contains at least k points at 
least as good as τ

• None of the points in the blue 
region (unseen points) can 
beat τ

• The dashed red line separates 
the region of points with a 
higher score than τ from the 
rest
• Now, Crillon is as good as 

τ and Novotel is better



Ranking queries – main aspects

• Pros:
– Very effective in identifying the best objects

• Wrt. a specific scoring function

– Very efficient
– Excellent control of the cardinality of the result (k)
– Easy to express the relative importance of attributes

• Cons:
– For a user, it is difficult to specify a scoring function

• E.g., the weights of a weighted sum (magic numbers…)



  

Skyline queries



Skylines
• The skyline of a relation is the set of its non-dominated 

tuples. Aka:
– Maximal vectors problem (computational geometry)
– Pareto-optimal solutions (multi-objective optimization)

• Tuple t dominates tuple s, indicated t ≺ s, iff
∀i. 1≤i≤m → t[Ai] ≤ s[Ai] 
(t is nowhere worse than s)

∃j. 1≤j≤m ∧ t[Aj] < s[Aj] 
(and better at least once)

• In 2D, the shape resembles the contour 
of the dataset (hence the name)
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Skylines

• In 2D, the shape resembles the contour 
of the dataset (hence the name)
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Skyline queries in SQL

• No standard notation
• Can be easily rendered in SQL:

SELECT * FROM Hotels h
WHERE h.city = 'Paris' AND NOT EXISTS (
    SELECT * FROM Hotels h1
    WHERE h1.city = h.city AND
     h1.distance <= h.distance AND
     h1.price    <= h.price AND
    (h1.distance <  h.distance OR
     h1.price    <  h.price))

• Computation is O(N2)
– Presorting the dataset helps, but still quadratic

[Börzsönyi et al., ICDE 2001]



Skylines – main aspects
• Pros:

– Effective in identifying potentially interesting objects if nothing 
is known about the preferences of a user

– Very simple to use (no parameters needed!)
• Cons:

– May return too many results
– Computation is essentially quadratic in the size of the dataset
– No preferences (e.g., price is more important than distance)

• Extension: k-skyband = set of tuples dominated by less than 
k tuples
– Skyline = 1-skyband
– Every top-k result set is contained in the k-skyband
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Example: skyline/k-skyband query

skyline

2-skyband = 3-skyband

No top-2 or top-3 query
will return a       point



Example: ranking query

●●
●●

●●

●●
○

○

○
○○

○

●●
●●

●●

●●
○

○

○
○○

○

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��������

��
��
�

�

�

�

�

�����=��������+�*�����



Example: another ranking query
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Extending skylines



Skylines, revisited

• Two equivalent points of view:
– Tuples that are non-dominated:

– Tuples that are optimal according to some 
monotone scoring function:

attribute Ai; t is also written as hv1, . . . , vdi, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t � s, if
(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj ] < s[Aj ]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A scor-
ing function f is a function f : [0, 1]d ! R+. For a tuple
t = hv1, . . . , vdi over R, the value f(v1, . . . , vd) is called the
score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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Skylines, revisited

• Two equivalent points of view:
– Tuples that are non-dominated:

– Tuples that are optimal according to some 
monotone scoring function:
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score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .
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Flexible skylines - example

• Sky returns C1, C2, C4, C6, C7
• Consider
• ND-Sky returns C1, C2, C4

– C6 and C7 are F-dominated by C4
• PO-Sky returns C1, C4

– No allowed combination of weights can make C2 the top 
car

CarID Price (⇥103) Mileage (⇥103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5

Table 2: The UsedCars relation.

to some function in F . While nd-Sky and po-Sky coincide
and capture the traditional skyline when F is the family of
all monotone scoring functions, their behaviors di↵er when
subsets thereof are considered. R-skylines capture in a single
framework all the practically relevant approaches to multi-
objective optimization, traditionally dealt with separately,
and enable the study of other scenarios of practical inter-
est. For example, in multicriteria analysis, decision makers
may encounter objectives in which the model parameters
lack completeness or confidence, and are characterized by
complex preferences between, e.g., attribute weights, such
as “attribute C is more important than attribute A, but no
more than twice as important” [18]. Other complex con-
straints characterizing the objective might come from pref-
erence elicitation from a crowd (see, e.g., [5] and references
therein for strategies for collecting preferences between tu-
ples).

Example 1. For the relation UsedCars(ID,Price,Mileage)
in Table 2, a skyline query over the attributes Price and
Mileage (both to be minimized) will return cars C1, C2,
C4, C6, and C7. Now assume that your preferences con-
sider Price more important than Mileage (in which case a
p-skyline query would just return car C1, since it has the
minimum price). By considering the family of scoring func-
tions F = {wP Price + wMMileage | wP � wM}, nd-Sky,
i.e., the set of non-F-dominated cars, includes C1, C2, and
C4, with only C1 and C4 being also part of po-Sky. Al-
though in the skyline, both C6 and C7 are F-dominated by
C4, which is reasonable since they both have a relatively high
price. On the other hand, car C2 is non-F-dominated, yet
there is no combination of weights values that can make it a
top-1 result.

The main contributions of this paper are as follows.
1. We introduce two operators generalizing both skyline

and ranking queries.
2. We study the properties of these operators, called R-

skylines, and in particular their relationship with skyline
and top-1 queries, as well as their behavior as the set F of
scoring functions under consideration varies.

3. We study the application of R-skylines when the scor-
ing functions in F are Lp norms or, generally, functions that
are linear in the weights (or monotonic transforms thereof).

4. We discuss two alternative approaches to computing
R-skylines based on Linear Programming, one addressing a
direct F-dominance test between tuples, the other charac-
terizing the “dominance region” wrt. F of a tuple.

5. We evaluate the e↵ectiveness of R-skylines (i.e., their
ability to restrict the set of tuples of interest) in a number
of di↵erent experimental settings including synthetic as well
as real datasets; we also discuss di↵erent implementations
of the operators and test their e�ciency in the di↵erent sce-
narios.

Related work. Due to the limits that each of the basic
methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily find-
ing interesting results in large datasets.
Several techniques have been proposed for reducing the

skyline size, a recent survey of which can be found in [11].
Among them, distance-based representative skylines [20] aim
to determine the k tuples in the skyline for which the max-
imum distance to the excluded skyline points is minimized.
Since this problem is NP-hard, only approximate solutions
can be provided. Furthermore, the method is also sensitive
to the specific metric used to measure distance among tu-
ples. Another approach to select a limited subset of skyline
tuples is to assign to each of them a measure of interesting-
ness based on some specific properties. Top-k Representa-
tive Skyline Points (RSP) [10] are the k skyline points that
together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more
dimensions, thus approximate solutions are adopted in prac-
tice. Top-k dominating queries [21] return the k tuples that
dominate the highest number of tuples in the dataset, i.e.,
they rank tuples according to the number of other tuples
they dominate. Besides the high computational cost in-
curred by this approach if the input dataset is not indexed, a
major drawback is that the score of a tuple depends on how
worse tuples are distributed, a problem that this method
shares with top-k RSP.
Among the methods that only rely on the order proper-

ties of skylines, i.e., without any reference to the actual un-
derlying attribute domains (which can consequently also be
categorical), we mention p-skylines and trade-o↵ skylines.
P-skyline (or Prioritized skyline) queries [14] are a gener-
alization of skyline queries in which the user can specify
that some attributes are more important than others, by re-
specting the syntax of so-called p-expressions. In practice, a
p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the
size of the result, p-skylines usually contain many fewer tu-
ples than skylines. P-skylines can be e�ciently computed
by taking advantage of the reduced cardinality of the result,
i.e., with an output-sensitive algorithm [13]. The idea of
trade-o↵ skylines [12] is similar to the one we adopt in this
paper. However, while we consider numerical domains and
consequently numerical trade-o↵s, [12] adopts the view of
qualitative trade-o↵s. Although the latter has the advan-
tage of being also applicable to categorical attributes, the
price to be paid is increased computational complexity.
Somehow related to what we study in this paper are those

works on top-k queries in which the scoring function is not
univocally defined, e.g., [22, 16]. Along these lines, [19] stud-
ies representative orderings (such as the most probable or-
dering) and their stability wrt. a change of parameters, by
assuming that the set of parameters (weights) is a random
variable with a uniform distribution.

2. PRELIMINARIES

Consider a relational schema R(A1, . . . , Ad), with d � 1.
Without loss of generality, we assume that the domain of
each attribute Ai is [0, 1], since each numeric domain could
be normalized in this interval. In this paper, we consider
lower values to be better than higher ones, but the opposite
convention would of course also be possible. A tuple t over
R is a function that associates a value vi in [0, 1] with each

2

●
●

●●

●

●

○

○

●
●

●●

●

●

○

○

0 10 20 30 40
0

10

20

30

40

price × 1000

m
ile
ag
e
×
10
00

C1

C2

C3

C4

C5

C6

C7

● Sᴋʏ∖ɴᴅ

● ɴᴅ∖ᴘᴏ

● ᴘᴏ

A dataset of used cars



Flexible skylines - example

• Sky returns C1, C2, C4, C6, C7
• Consider
• ND-Sky returns C1, C2, C4

– C6 and C7 are F-dominated by C4
• PO-Sky returns C1, C4

– No allowed combination of weights can make C2 the top 
car

CarID Price (⇥103) Mileage (⇥103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5

Table 2: The UsedCars relation.

to some function in F . While nd-Sky and po-Sky coincide
and capture the traditional skyline when F is the family of
all monotone scoring functions, their behaviors di↵er when
subsets thereof are considered. R-skylines capture in a single
framework all the practically relevant approaches to multi-
objective optimization, traditionally dealt with separately,
and enable the study of other scenarios of practical inter-
est. For example, in multicriteria analysis, decision makers
may encounter objectives in which the model parameters
lack completeness or confidence, and are characterized by
complex preferences between, e.g., attribute weights, such
as “attribute C is more important than attribute A, but no
more than twice as important” [18]. Other complex con-
straints characterizing the objective might come from pref-
erence elicitation from a crowd (see, e.g., [5] and references
therein for strategies for collecting preferences between tu-
ples).

Example 1. For the relation UsedCars(ID,Price,Mileage)
in Table 2, a skyline query over the attributes Price and
Mileage (both to be minimized) will return cars C1, C2,
C4, C6, and C7. Now assume that your preferences con-
sider Price more important than Mileage (in which case a
p-skyline query would just return car C1, since it has the
minimum price). By considering the family of scoring func-
tions F = {wP Price + wMMileage | wP � wM}, nd-Sky,
i.e., the set of non-F-dominated cars, includes C1, C2, and
C4, with only C1 and C4 being also part of po-Sky. Al-
though in the skyline, both C6 and C7 are F-dominated by
C4, which is reasonable since they both have a relatively high
price. On the other hand, car C2 is non-F-dominated, yet
there is no combination of weights values that can make it a
top-1 result.

The main contributions of this paper are as follows.
1. We introduce two operators generalizing both skyline

and ranking queries.
2. We study the properties of these operators, called R-

skylines, and in particular their relationship with skyline
and top-1 queries, as well as their behavior as the set F of
scoring functions under consideration varies.

3. We study the application of R-skylines when the scor-
ing functions in F are Lp norms or, generally, functions that
are linear in the weights (or monotonic transforms thereof).

4. We discuss two alternative approaches to computing
R-skylines based on Linear Programming, one addressing a
direct F-dominance test between tuples, the other charac-
terizing the “dominance region” wrt. F of a tuple.

5. We evaluate the e↵ectiveness of R-skylines (i.e., their
ability to restrict the set of tuples of interest) in a number
of di↵erent experimental settings including synthetic as well
as real datasets; we also discuss di↵erent implementations
of the operators and test their e�ciency in the di↵erent sce-
narios.

Related work. Due to the limits that each of the basic
methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily find-
ing interesting results in large datasets.
Several techniques have been proposed for reducing the

skyline size, a recent survey of which can be found in [11].
Among them, distance-based representative skylines [20] aim
to determine the k tuples in the skyline for which the max-
imum distance to the excluded skyline points is minimized.
Since this problem is NP-hard, only approximate solutions
can be provided. Furthermore, the method is also sensitive
to the specific metric used to measure distance among tu-
ples. Another approach to select a limited subset of skyline
tuples is to assign to each of them a measure of interesting-
ness based on some specific properties. Top-k Representa-
tive Skyline Points (RSP) [10] are the k skyline points that
together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more
dimensions, thus approximate solutions are adopted in prac-
tice. Top-k dominating queries [21] return the k tuples that
dominate the highest number of tuples in the dataset, i.e.,
they rank tuples according to the number of other tuples
they dominate. Besides the high computational cost in-
curred by this approach if the input dataset is not indexed, a
major drawback is that the score of a tuple depends on how
worse tuples are distributed, a problem that this method
shares with top-k RSP.
Among the methods that only rely on the order proper-

ties of skylines, i.e., without any reference to the actual un-
derlying attribute domains (which can consequently also be
categorical), we mention p-skylines and trade-o↵ skylines.
P-skyline (or Prioritized skyline) queries [14] are a gener-
alization of skyline queries in which the user can specify
that some attributes are more important than others, by re-
specting the syntax of so-called p-expressions. In practice, a
p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the
size of the result, p-skylines usually contain many fewer tu-
ples than skylines. P-skylines can be e�ciently computed
by taking advantage of the reduced cardinality of the result,
i.e., with an output-sensitive algorithm [13]. The idea of
trade-o↵ skylines [12] is similar to the one we adopt in this
paper. However, while we consider numerical domains and
consequently numerical trade-o↵s, [12] adopts the view of
qualitative trade-o↵s. Although the latter has the advan-
tage of being also applicable to categorical attributes, the
price to be paid is increased computational complexity.
Somehow related to what we study in this paper are those

works on top-k queries in which the scoring function is not
univocally defined, e.g., [22, 16]. Along these lines, [19] stud-
ies representative orderings (such as the most probable or-
dering) and their stability wrt. a change of parameters, by
assuming that the set of parameters (weights) is a random
variable with a uniform distribution.

2. PRELIMINARIES

Consider a relational schema R(A1, . . . , Ad), with d � 1.
Without loss of generality, we assume that the domain of
each attribute Ai is [0, 1], since each numeric domain could
be normalized in this interval. In this paper, we consider
lower values to be better than higher ones, but the opposite
convention would of course also be possible. A tuple t over
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F-dominance regions

• The F-dominance region of t
– set of all points F-dominated by t

 Linear, w1 ≥ w2        Quadratic, w1+w2 ≥ w3
3.1 Basic Properties

In the following we present basic facts about nd-Sky and
po-Sky, and further investigate their relationship with Sky.

As a direct consequence of the definitions, we observe that,
when the set F of scoring functions under consideration co-
incides with M, the following holds:

po-Sky(r;M) = nd-Sky(r;M) = Sky(r). (7)

In general, though, there is a containment relationship, as
indicated in Proposition 1 below.

Proposition 1. For any set F of monotone scoring func-
tions, the following holds:

po-Sky(r;F) ✓ nd-Sky(r;F) ✓ Sky(r). (8)

Proof. We first observe that nd-Sky(r;F) ✓ nd-Sky(r;M)
follows from Equation (5), since F ✓ M entails �M✓�F .
By transitivity with Equation (7), we obtain nd-Sky(r;F) ✓
Sky(r).

Take now any tuple t 2 po-Sky(r;F). According to Defi-
nition 6, there exists a scoring function f 2 F such that f(t)
is lower than the score of any other tuple in r. Therefore,
there cannot be any tuple in r that F-dominates t in the
sense of Definition 4, because for at least function f , t would
achieve a better score. Therefore, t is not F-dominated, and
therefore t 2 nd-Sky(r;F) according to Definition 5. This
proves that po-Sky(r;F) ✓ nd-Sky(r;F).

We also observe that nd-Sky and po-Sky are monotone
operators with respect to the set of scoring functions, as
specified in Proposition 2 below.

Proposition 2. For any two sets F1 and F2 of mono-
tone scoring functions such that F1 ✓ F2, the following
holds:

nd-Sky(r;F1) ✓ nd-Sky(r;F2), (9)

po-Sky(r;F1) ✓ po-Sky(r;F2). (10)

Proof. Inequality (9) follows from Equation (5) by observing
that F1 ✓ F2 entails �F2✓�F1 . Inequality (10) is a direct
consequence of Definition 6.

A case of practical relevance is when one starts with a set
F of scoring functions and adds some constraints on the
way they are defined. A notable example is that of func-
tions characterized by parameters such as weights. To this
end, let W be the set of all normalized weight vectors, i.e.,
W ✓ [0, 1]d and, for each W = (w1, . . . , wd) 2 W, we havePd

i=1 wi = 1. Let C be a, possibly empty, set of (linear)
constraints on weights, and denote with W(C) the subset of
W that satisfies C, i.e.,: W(C) = {W 2 W | C(W ) = true}.
If F is a set of functions with parameters w1, . . . , wd, we
denote by F

C the set of functions obtained from set F by
imposing the set of constraints C. Henceforth, we always
assume that C is not contradictory, i.e., W(C) 6= ;, and that
the application of C leads to a non-empty set of functions,
i.e., FC

6= ;.

Corollary 1. For any set F of monotone functions and
sets of constraints C1 and C2 such that W(C1) ✓ W(C2), the
following holds:

nd-Sky(r;FC1) ✓ nd-Sky(r;FC2), (11)

po-Sky(r;FC1) ✓ po-Sky(r;FC2). (12)
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(a) Tuples and F-dominance

region (in gray).

(b) Tuples from Example 3 in

[0, 1]d, d = 2. F-dominance re-

gion in gray.

Figure 1: Example 3 – tuples and weights in [0, 1]d, d = 2, C = {w1 �
w2}, F = LC

1 , where L1 is the set of monotone scoring functions that

are weighted sums of attribute values.

Proof. The proof follows directly from Proposition 2, since
F

C1 ✓ F
C2 , having assumed W(C1) ✓ W(C2).

We now define the F-dominance region of a tuple t.

Definition 7. The F-dominance region DR(t;F) of a
tuple t under a set F of monotone scoring functions is the
set of all points in [0, 1]d that are F-dominated by t:

DR(t;F) = {s 2 [0, 1]d | t �F s}. (13)

A consequence of Definition 7 is that the F-dominance re-
gion grows larger for smaller sets of functions, as specified
in Corollary 2 below.

Corollary 2. For any tuple t over R and any two sets
F1 and F2 of monotone scoring functions such that F1 ✓ F2,
the following holds:

DR(t;F1) ◆ DR(t;F2). (14)

Proof. Inequality (14) follows from Definition 7 by observing
that F1 ✓ F2 entails �F2✓�F1 .

We now illustrate Proposition 1 and Definition 7 with the
following Example.

Example 3. Let L1 be the set of all the linear scoring
functions of the form f(x, y) = w1x+ w2y and let F = L

C
1 ,

where C = {w1 � w2}. Consider tuples t1 = h0.3, 0.6i, t2 =
h0.4, 0.45i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i, and instance r =
{t1, t2, t3, t4}, shown in Figure 1a. We have po-Sky(r;F) =
{t1, t3} ✓ nd-Sky(r;F) = {t1, t2, t3} ✓ Sky(r) = r.
To see this, first observe that no tuple in r dominates any

other tuple in r, and therefore Sky(r) = r. However, we
note that t3 �F t4: indeed, checking whether f(t3)  f(t4)
amounts to checking whether w1(0.5�0.6)  w2(0.15�0.2),
which is always true in F , since w1 � w2. Therefore t4 /2
nd-Sky(r;F). To further emphasize this, Figure 1a shows
in gray the region of [0, 1]d whose points (including tuple
t4) are F-dominated by some tuple in r, i.e., [t2rDR(t;F),
whereas Figure 1b shows in gray the region of normalized
weights such that w1 � w2. The computation of such regions
will be studied in depth in Section 4.1.
Finally, with linear scoring functions, as is well known [19],

top-1 tuples can only lie in the boundary of the convex hull

4
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Fig. 3. Example 4.3—tuples and weights in [0, 1]d , d = 3, C = {w1 +w2 ≥ w3}, F as in Equation (26).

For t = ⟨ 1
2 ,

1
2 ,

1
2 ⟩, DR (t ;F ) is characterized by

{ es[A1] ≥ e
1
2 ,

log(1 + s[A2]) ≥ log(1 + 1
2 ),

1
2e

s[A1] + 1
2s[A3]2 ≥ 1

2e
1
2 + 1

2
1
22 ,

1
2 log(1 + s[A2]) + 1

2s[A3]2 ≥ 1
2 log(1 + 1

2 ) + 1
2

1
22 }. (27)

Therefore, tuple t ′ = ⟨0.7, 0.5, 0.3⟩ is not F -dominated by t , as the last inequality in System (27) is
not satisfied when s = t ′. See Figure 3 for a graphical representation.

The only significant overhead introduced by this approach is the enumeration of the vertices of
W (C), that, however has to be done just once.

4.2 Computing Potentially Optimal Tuples
The fact that a tuple t is not F -dominated is only a necessary condition for t to be potentially
optimal, since there might anyhow be no function f ∈ F such that f (t ) < f (s ) holds for all s ! t .

An important property that suggests also a viable way to compute potentially optimal tuples is
implied by the following proposition, which states that po can be computed without considering
F -dominated tuples. In particular, this allows computing po in two phases, the first of which
computes nd, as we shall discuss in detail in Section 5.

Proposition 4.4. LetF be a set of MLW functions subject to a setC of linear constraints on weights
and such that h is strictly monotone. Then, for any instance r , we have po(r ;F ) = po(nd(r ;F );F ).

The intuition behind the above result is that if t ∈ po(nd(r ;F );F ) then there is a function
f ∈ F such that f (t ) < f (s ), for all other tuples s ∈ nd(r ;F ). In case for such f t ties with some
tuple t ′ not in nd(r ;F ), then, from the continuity of MLW functions, there exists another function
f ′ “close” to f such that t remains the best tuple in nd(r ;F ) and f ′(t ) < f ′(t ′).

From the very definition of potential optimality and Proposition 4.4, we have the following
result, which holds provided that h is a strictly monotone function.
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Extensions of Flexible Skylines

• Idea: leverage the k-skyband to target the 
potential top k (instead of just top 1)

• NDk(r;F) = tuples F-dominated by less than k 
tuples in r

• POk(r;F) = top-k tuples in r for at least one 
function in F

• Both ND and PO coincide with
– Top-k query if F is a single scoring function
– k-Skyband if F = M (all monotone functions)

[CIKM 2018] [Mouratidis&Tang, VLDB 2018]



Pros and cons of Flexible Skylines

• Pros:
– User preferences (via constraints on weights)
• More robust with respect to magic numbers

– Reduced output size
– Computed efficiently for Lp norms with linear 

constraints on weights

• Cons:
– Cardinality of output not directly controllable
• Even less so for extensions based on k-skybands

– Still slow for loose constraints



Speaking of 
magic numbers…

• FIFA World Ranking system 
2006-2018
– Teams ranked by a combination 

of their previous performance (px 
= performance x years ago) 
score = p0 + 0.5p1 + 0.3p2 + 0.2p3
– A very unstable scoring function

• Tiny weight changes heavily affect 
the final ranking
– These weights were just magic 

numbers
– NB: France was never #1 in that 

period



Stability
[SIGMOD 2011]

ID Rating Stars

τ1 2 6

τ2 7 5

τ3 4 7

τ4 5 2

Rank by
wR*rating + wS*stars
wR+wS=1

wR

wS

1.0

1.0

.83.57.4.17

.17

.43

.6

.83

⟨τ2,τ4,τ3,τ1⟩ 

⟨τ2,τ3,τ4,τ1⟩ 

⟨τ2,τ3,τ1,τ4⟩ 

⟨τ3,τ2,τ1,τ4⟩ 

⟨τ3,τ1,τ2,τ4⟩ 

Most Probable (k=2)

Stability of (.2,.8) @ k =2



Adding cardinality control

• Aim: Output-Size Specified (OSS) operators
• Idea:
– Collect user preferences (weight vector w)
– Apply either NDk (called ORD) or POk (ORU) 
– Limit their output size to a user-defined number m
• Use a set F of linear scoring functions whose weight 

vector w’ is at a distance at most ϱ from w so that the 
output size is exactly m

[Mouratidis et al., SIGMOD 2021]



A practical case: NBA
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A practical case: NBA
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A practical case: NBA
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A practical case: NBA

w1

w2

w=(½,½)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Curry

3-Point Field Goals Made

O
ffe
ns
iv
e
R
eb
ou
nd
s

w1

w2

w=(½,½)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Curry

Allen

Malone

Carter

3-Point Field Goals Made

O
ffe
ns
iv
e
R
eb
ou
nd
s

Top-4 results  Increasing the radius…



A practical case: NBA
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Features of ORD and ORU

• Pros:
– OSS operators
• output size may be easier than constraints on weights

– Personalized with user preferences (weights)
– Flexible (weights used loosely)

• Cons:
– Too many size parameters (k and m)
• When k=m, it’s a standard linear top-k query (ϱ = 0) 

– Restricted to linear functions
• The most common choice, but…

[Mouratidis et al., SIGMOD 2021]



  

Beyond linear queries



The limits of linear top-k queries

• No linear function 
ranks A, B or C as top
– Interesting results but 

difficult to retrieve

Directional �eries: Making Top-k�eries More E�ective in
Discovering Relevant Results

ABSTRACT
Top-: queries, in particular those based on a linear scoring function,
are a common way to extract relevant results from large datasets.
Their major advantage over alternative approaches, such as skyline
queries (these return all the undominated objects in a dataset), is
that the cardinality of the output can be easily controlled through
the : parameter and user preferences can be accommodated by
appropriately weighing the involved attributes.

In this paper we concentrate on two so-far neglected aspects
of top-: queries: �rst, their general ability to return all the poten-
tially interesting results, i.e., the tuples in the skyline; second, the
di�culty that linear top-: queries might encounter in returning
tuples with balanced attribute values, that match user preferences
more closely than tuples that are extremely good in one dimension
but (very) poor in others. In order to quantify these undesirable
e�ects we introduce four novel indicators for skyline tuples, which
measure their robustness as well as the di�culty incurred by top-:
queries to retrieve them.

After empirically observing that real datasets usually contain
many relevant results that are hardly retrievable by linear top-:
queries, and with the aim of favoring balanced results, we extend
the queries with a term that accounts for the distance of a tuple
from the preference direction established by the attributes’ weights.
This novel query, which we call directional query, adds the required
�exibility needed to allow each skyline tuple to be ranked �rst for a
proper choice of weights, with no extra burden on the user and, in
the most adverse scenarios, only a minor computational overhead,
as measured through an extensive experimental analysis on real
and synthetic data.
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(a) Dataset

weights
F3 0.3 0.5 0.7
F? 0.7 0.5 0.3

hotel
ranks

� 11 10 6
⌫ 7 8 7
⇠ 6 13 9

(b) Ranks of�, ⌫, and⇠

Figure 1: A hotel dataset and ranks of some hotels

1 INTRODUCTION
Ranking queries based on linear scoring functions (i.e., using a
weighted sum of the attribute values) are undoubtedly the most
common way to obtain relevant results from large, multi-attribute
datasets. This stems from a series of factors, including the ability to
limit the cardinality of the result (hence the alternate name “top-:
queries”, where : is the output size), the possibility of incorporating
user preferences (in the form of weights), and the availability of e�-
cient indexing and processing methods [20]. In spite of this, linear
top-: queries have several shortcomings, including the di�culty in
specifying exact values for the weights, which is an especially hard
task with many attributes [12, 25, 28].

In this paper we focus on further limitations of linear top-:
queries that have so far been neglected. First, the best result ac-
cording to any linear top-: query is restricted to be an element of
the convex hull of the dataset [6]. This can lead to missing relevant
results, even when large values of : are used. Second, depending on
data distribution, tuples with somehow balanced attribute values
might be hard to retrieve. Example 1.1 illustrates both aspects.

Example 1.1. Ana is looking for a room and wants to minimize
both the price and the distance from the city center. The hotels still
available for reservation, shown in Figure 1a, mainly concentrate
in two clusters: luxury hotels located at most a few hundred meters
from the center, and budget hotels, further away from the center.
Hotels �, ⌫, and ⇠ are more balanced alternatives lying between
these two extreme cases, with intermediate prices and not too far
from the center – a combination that might indeed be an interesting
trade-o� for Ana. Assume that hotels are ranked by a linear function
combining (normalized) price and distance, i.e.,F3 ·38BC0=24/3000+
F? · ?A824/330. No matter how Ana speci�es the weights, the best
result will be a hotel in one of the two clusters. Furthermore, for any
choice of the weights, the top-5 set will never include any of �, ⌫,
or ⇠ , whose ranks are shown in Figure 1b for several combinations
ofF3 andF? (the lower the rank, the better).

As the example highlights, a dataset might well contain inter-
esting results that are hardly retrievable by any linear top-: query.



Indicators of difficulty

Best rank via linear query Non-linearity to be top 1



Indicators of interest/robustness

Exclusive volume Grid resistance



Balance and directional queries

• Weights induce a preference line
– Balanced results are close to it

• Directional query = Linear query + balance

Linear query Directional query

Equal
weights



The shape of directional queries

Linear

More directional Less directional



Directional vs linear queries
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Features of Directional Queries

• Pros:
– Increased balance of results
– Increased overall exclusive volume
– Increased overall grid resistance
– Can retrieve all difficult tuples
– Retains all standard advantages of top-k queries

• Cons:
– What is the right mix of linear + balance?



  

Alternative approaches



Regret-Minimizing Sets

• For a scoring function f and a set D, let
Topf(D) = maxx∈Df(x) (top score via f in D)

• The regret of S⊂D is (Topf(D)-Topf(S))/Topf(D)
• Find a set S of size k minimizing its maximum 

regret for any linear scoring function
• Pros:
– may be used to add cardinality control to skylines

• Cons:
– no preferences
– only linear functions



  

Wrap up



Orthogonal aspects (not covered)

• Diversification of results
• Fairness of the selection process
– Preserving the distribution of the input data
– Changing scoring function / algorithm / data

• Uncertainty in the data
• Determining the true preferences of a user
• Point of view of the seller: which weights 

should I use so that my product becomes top?



Conclusions

• Ranking tools are still evolving towards the 
ultimate solution satisfying all desiderata
– Preferences, output size control, efficiency, …

• Objective (and subjective) measures needed
– Many datasets, no standard benchmark
– User studies may come in handy



  

Thank you!
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