
Flexible Score Aggregation

Davide Martinenghi
Bolzano, November 12, 2018

Outline

§ Finding interesting objects in a dataset
• Multi-objective optimization

§ Historical perspective
• Rank aggregation
• Classical approaches and their limitations

§ Combining opaque rankings
• Median ranking with MedRank

§ Ranking queries
• Fagin’s Algorithm and Threshold Algorithm

§ Skyline queries
• Block-Nested-Loop and Sort-Filter-Skyline Algorithms

§ Restricted skylines
• Reconciling Ranking Queries and Skyline Queries
• Reconciling Fagin’s Algorithm and Threshold Algorithm

Finding interesting objects

in a dataset

Multi-objective optimization

§ Simultaneous optimization of different criteria
• E.g., different attributes of objects in a dataset

§ Main scenarios:
• Combination of user preferences expressed by multi-

criteria queries
– Example: ranking restaurants by combining criteria about

culinary preference, driving distance, stars, …
• Meta-search

– For a given query, combine the results from different
search engines

• Nearest neighbor problem (e.g., similarity search)
– Given a database D of n points in some metric space,

and a query q in the same space, find the point (or
the k points) in D closest to q

Multi-objective optimization

§ Simultaneous optimization of different criteria
• E.g., different attributes of objects in a dataset

§ Main approaches:

• Ranking queries
– Top k objects according to a given scoring function

• Skyline queries
– Set of non-dominated objects

• Lexicographic queries
– strict priority among different attributes
– even the smallest difference in the most important

attribute can never be compensated by the other attributes

Historical perspective

Rank aggregation: the original problem

§ Rank aggregation is the problem of combining several ranked
lists of objects in a robust way to produce a single consensus
ranking of the objects

[Borda, 1770][Marquis de Condorcet, 1785]

Rank aggregation: the original problem

§ Rank aggregation is the problem of combining several ranked
lists of objects in a robust way to produce a single consensus
ranking of the objects
• Old problem (social choice theory) with lots of open challenges
• Given: n candidates, m voters

§ What is the overall ranking according to all the Voters?
• No visible score assigned to candidates, only ranking

§ Who is the best candidate? (point of view of the buyer)

Candidate
A
B
C
D
E

Candidate
B
D
E
A
C

Candidate
D
B
E
C
A

Candidate
E
A
C
D
B

Candidate
C
E
A
B
D

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

[Borda, 1770][Marquis de Condorcet, 1785]

Borda’s and Condorcet’s proposals

§ Borda’s proposal
• Election by order of merit
– First place à 1 point
– Second place à 2 points
– …
– n-th place à n points

• Candidate’s score: sum of points

§ Borda winner: lowest scoring candidate

§ Condorcet winner:
• A candidate who defeats every other candidate in pairwise

majority rule election

Borda winner <> Condorcet winner

§ Borda scores:
• A: 1x6+3x4 = 18
• B: 3x6+2x4 = 26
• C: 2x6+1x4 = 16 ß Borda winner

§ Condorcet’s criterion:
• A beats both B and C in pairwise majority
• A is Condorcet’s winner

1 2 3 4 5 6 7 8 9 10
A A A A A A C C C C
C C C C C C B B B B
B B B B B B A A A A

A

B C

Condorcet’s paradox

§ Condorcet’s winner may not exist
• Cyclic preferences

1 2 3
C B A
B A C
A C B

A

B C

Main approaches to rank aggregation

§ Axiomatic approach
– Desiderata of aggregation formulated as “axioms”

– By the classical result of Arrow, a small set of natural
requirements cannot be simultaneously achieved by any
nontrivial aggregation function

– Arrow’s paradox: no rank-order electoral system can be
designed that always satisfies these three "fairness" criteria:
– No dictatorship (nobody determines, alone, the group’s preference)
– If all prefer X to Y, then the group prefers X to Y
– If, for all voters, the preference between X and Y is unchanged, then

the group preference between X and Y is unchanged

[Arrow, 1950]

Main approaches to rank aggregation

§ Metric approach
– Finding a new ranking R whose total distance to the initial

rankings R1, …, Rn is minimized

– Several ways to define a distance between rankings
– Kendall tau distance K(R1, R2), defined as the number of

exchanges in a bubble sort to convert R1 to R2
– Spearman’s footrule distance F(R1, R2), which adds up

the distance between the ranks of the same item in the
two rankings

– Finding an exact solution is
– NP-hard with Kendall tau
– PTIME with Spearman’s footrule
– It is known that

K(R1, R2) ≤ F(R1, R2) ≤ 2 K(R1, R2)
– F(R1, R2) admits efficient approximations (e.g., median ranking)

Combining opaque rankings

Combining opaque rankings

§ Techniques using only the position of the elements in
the ranking (no other associated score)

§ We review MedRank, proposed by Fagin et al.
– Based on the notion of median, it provides a(n

approximation of) Footrule-optimal aggregation

§ MedRank is instance-optimal
– Among the algorithms that access the rankings in sorted

order, this is the best possible algorithm (to within a
constant factor) on every input instance

Input: m rankings of n elements

Output: the top k elements according to median ranking

1. Use sorted accesses in each ranking, one element at a
time, until there are k elements that occur in more than
m/2 rankings

2. These are the top k elements

[Fagin, Kuvar, Sivakumar, SIGMOD 2003]

An aside: instance optimality

§ A form of optimality aimed at when standard
optimality is unachievable

§ Formally:
§ Let A be a family of algorithms
§ Let I be a set of problem instances
§ Let c be a cost metric applied to an algorithm-instance

pair
§ Algorithm A* is instance-optimal wrt. A and I for the

cost metric c if there exist constants k1 and k2 such that,
for all A∈A and I∈I,

c(A*, I) ≤ k1 ⋅ c(A, I) + k2

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch
Etap Novotel Lodge In
Novotel Sheraton Ritz
Mercure Hilton Lutetia
Hilton Ibis Novotel
Sheraton Ritz Sheraton
Crillon Lutetia Mercure
… …

Top 3 hotels Median rank

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch
Etap Novotel Lodge In
Novotel Sheraton Ritz
Mercure Hilton Lutetia
Hilton Ibis Novotel
Sheraton Ritz Sheraton
Crillon Lutetia Mercure
… …

Top 3 hotels Median rank

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch
Etap Novotel Lodge In
Novotel Sheraton Ritz
Mercure Hilton Lutetia
Hilton Ibis Novotel
Sheraton Ritz Sheraton
Crillon Lutetia Mercure
… …

Top 3 hotels Median rank

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch
Etap Novotel Lodge In
Novotel Sheraton Ritz
Mercure Hilton Lutetia
Hilton Ibis Novotel
Sheraton Ritz Sheraton
Crillon Lutetia Mercure
… …

Top 3 hotels Median rank
Novotel median{2,3,?}=3

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch
Etap Novotel Lodge In
Novotel Sheraton Ritz
Mercure Hilton Lutetia
Hilton Ibis Novotel
Sheraton Ritz Sheraton
Crillon Lutetia Mercure
… …

Top 3 hotels Median rank
Novotel median{2,3,?}=3

MedRank example: hotels in Paris

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

price rating distance
Ibis Crillon Le Roch

Etap Novotel Lodge In

Novotel Sheraton Ritz

Mercure Hilton Lutetia

Hilton Ibis Novotel

Sheraton Ritz Sheraton

Crillon Lutetia Mercure

… …

Top 3 hotels Median rank
Novotel median{2,3,5}=3

Hilton median{4,5,?}=5

Ibis median{1,5,?}=5

When the median ranks are all
distinct (unlike here), we have the
Footrule-optimal aggregation

Ranking queries

Ranking queries with a scoring function

§ Several studies consider rankings where the objects,
besides the position, also include a score (usually in
the [0, 1] interval)

§ Traditionally, two ways of accessing data:
• Sorted (sequential) access: access, one by one, the next

element (together with its score) in a ranked list,
starting from top

• Random access: given an element, retrieve its score
(position in the ranked list or other associated value)

§ Main interest in the top k elements of the aggregation
• Need for algorithms that quickly obtain the top results
• … without having to read each ranking in its entirety

§ Several algorithms developed in the literature to
minimize the accesses when determining the top k
elements
• Main works by Fagin et al.

Ranking queries

§ Objects are ranked by using a scoring function
• Weights may express relative importance of attributes
• The problem reduces to single-objective optimization
• Typically the function is monotone

§ Algorithmic focus is on different kinds of access to
data and optimality wrt. number of accesses

score=distance+2*price

●●
●●

●●

●●
○

○

○
○○

○

●●
●●

●●

●●
○

○

○
○○

○

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��������

��
��
�

�

�

�

�

�����=��������+�*�����

Fagin’s Algorithm (FA, also known as A0)

§ Complexity is sub-linear in the number N of objects
• Proportional to the square root of N when combining two

rankings
• The stopping criterion is independent of the scoring

function
• Not instance-optimal

Input: a monotone query combining rankings R1, …, Rn
Output: the top k <object, score> pairs

1. Extract the same number of objects by sorted accesses
in each ranking until there are at least k objects in
common

2. For each extracted object, compute its overall score by
making random accesses wherever needed

3. Among these, output the k objects with the best overall
score

[Fagin, PODS 1998]

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Look for hotels that appear in both rankings

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Example cont’d: hotels in Paris

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Now complete the score with random accesses

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score
Novotel .875
Crillon .825

Threshold Algorithm (TA)

§ TA is instance-optimal among all algorithms that use
random and sorted accesses (FA is not)
• The stopping criterion depends on the scoring function

§ The authors of TA received the Gödel prize in 2014 for
the design of innovative algorithms

Input: a monotone query combining rankings R1, …, Rn
Output: the top k <object, score> pairs

1. Do a sorted access in parallel in each ranking Ri
2. For each object o, do random accesses in the other

rankings Rj, thus extracting score sj
3. Compute overall score f(s1, …, sn). If the value is among

the k highest seen so far, remember o
4. Let sLi be the last score seen under sorted access for Ri
5. Define threshold T=f(sL1, …, sLn)
6. If the score of the k-th object is worse than T, go to step 1
7. Return the current top-k objects

[Fagin, Lotem, Naor, PODS 2001]

Example cont’d: hotels in Paris with TA

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score

Threshold
value: T = ??

point: t =(??,??)

Example cont’d: hotels in Paris with TA

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Then make a random access for each new hotel

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score
Crillon .825
Ibis .81

Threshold
value: T = .91

point: t =(.92,.9)

Example cont’d: hotels in Paris with TA

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Make one sorted access at a time in each ranking
• Then make a random access for each new hotel

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score
Novotel .875
Crillon .825

Threshold

value: T = .905

point: t =(.91,.9)

Example cont’d: hotels in Paris with TA

§ Query: hotels with best price and rating
• Scoring function: 0.5*cheapness+0.5*rating

§ Strategy:
• Stop when the score of the k-th hotel is no worse than

the threshold

Hotels Cheapness Hotels Rating
Ibis .92 Crillon .9
Etap .91 Novotel .9
Novotel .85 Sheraton .8
Mercure .85 Hilton .7
Hilton .825 Ibis .7
Sheraton .8 Ritz .7
Crillon .75 Lutetia .6
… …

Top 2 Score
Novotel .875
Crillon .825

Threshold
value: T = .825

point: t =(.85,.8)

Ranking queries – main aspects

§ Effective in identifying the best objects
• Wrt. a specific scoring function

§ Excellent control of the cardinality of the result
• k is an input parameter of a top-k query

§ For a user, it is difficult to specify a scoring function
• E.g., the weights of a weighted sum

§ Computation is very efficient
• E.g., N log k for local, unordered datasets of N elements
• Many different results for different settings

§ Easy to express the relative importance of attributes

Skyline queries

Skylines

§ Find good objects according to several different perspectives
• e.g., attribute values A1,...,Ad
• Based on the notion of dominance

§ Tuple t dominates tuple s, indicated t ≺ s, iff
• ∀i. 1≤i≤d → t[Ai] ≤ s[Ai] (t is nowhere worse than s)
• ∃j. 1≤j≤d ∧ t[Aj] < s[Aj] (and better at least once)

§ The skyline of a relation is the set of its non-dominated tuples

§ In 2D, the shape resembles the contour
of the dataset (hence the name) ●

●

●
●

○

○
○

○

○

○

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��������

��
��
�

�������

���-�������

Skylines – Block Nested Loop (BNL)

§ Computation is O(n2) where n=|D|

§ Very inefficient for large datasets

Input: a dataset D of multi-dimensional points
Output: the skyline of D

1. Let W = Ø
2. for every point p in D
3. if p not dominated by any point in W
4. remove from W the points dominated by p
5. add p to W
6. return W

[Börzsönyi et al., ICDE 2001]

Skylines – Sort-Filter-Skyline (SFS)

§ Pre-sorting pays off for large datasets, thus SFS performs
much better than BNL

Input: a dataset D of multi-dimensional points
Output: the skyline of D

1. Let S = D sorted by a monotone function of D’s attributes
2. Let W = Ø
3. for every point p in S
4. if p not dominated by any point in W
5. add p to W
6. return W

[Chomicki et al., ICDE 2003]

Example cont’d: hotels in Paris with SFS

§ Dataset
• (low values are good)

Hotels Cost Reviews
Ibis .08 .3
Novotel .15 .1
Hilton .175 .3
Crillon .25 .1
Sheraton .2 .2

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• E.g., by Cost + Reviews

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ Window
Hotels Cost Reviews
Novotel .15 .1

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ Window
Hotels Cost Reviews
Novotel .15 .1

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ Window
Hotels Cost Reviews
Novotel .15 .1
Ibis .08 .3

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ Window
Hotels Cost Reviews
Novotel .15 .1
Ibis .08 .3

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ Window
Hotels Cost Reviews
Novotel .15 .1
Ibis .08 .3

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Example cont’d: hotels in Paris with SFS

§ Sorted dataset
• Add if not dominated by

any point in the window

§ This is the skyline
Hotels Cost Reviews
Novotel .15 .1
Ibis .08 .3

Hotels Cost Reviews
Novotel .15 .1
Crillon .25 .1
Ibis .08 .3
Sheraton .2 .2
Hilton .175 .3

Skylines – main aspects

§ Effective in identifying potentially interesting objects if nothing
is known about the preferences of a user

§ Very simple to use (no parameters needed!)

§ Too many objects returned for large, anti-correlated datasets

§ Computation is essentially quadratic in the size of the dataset
(and thus not so efficient)

§ Agnostic wrt. known user preferences (e.g., price is more
important than distance)

§ Extension: k-skyband = set of tuples dominated by < k tuples
• Every top-k result set is contained in the k-skyband

Comparing different approaches

●
●

●
●

●

●

●

●

○

○

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��������

��
��
�

●●
●●●●

Example: skyline/k-skyband query

skyline
2-skyband = 3-skyband

No top-2 or top-3 query

will return a point○○

Example: ranking query

●●
●●

●●

●●
○

○

○
○○

○

●●
●●

●●

●●
○

○

○
○○

○

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��������

��
��
�

�

�

�

�

�����=��������+�*�����

Example: another ranking query

●●
●●

●●●●

○
○

○

○
○

○

●●
●●

●●●●

○
○

○

○
○

○
��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��������

��
��
�

�

�

�
�

�����=�*��������+�����

Example: lexicographic query favoring price

●●
●●

●●

●●

○
○

○
○

○

○

●●
●●

●●

●●

○
○

○
○

○

○
��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��������

��
��
�

�

�

�

� ����� �������� ���� �����

Comparing different approaches

Ranking queries Lexicographic
approach

Skyline queries

Simplicity No Yes Yes
Overall view of
interesting results

No No Yes

Control of
cardinality

Yes Yes No

Trade-off among
attributes

Yes No No

Relative
importance of
attributes

Yes Yes No

Restricted skylines

Restricted skylines

§ A reconciliation between skyline and ranking queries
• Take into account different importance of different attributes

– no strict priority as in the lexicographic approach

§ Extreme cases:
• Skyline queries: dominance across all monotone functions M
• Ranking queries: one single scoring function f∈M

§ Idea: consider a family of scoring functions F ⊆ M to
characterize the interesting objects

– may be specified by means of constraints on the weights

F-dominance:
• Tuple t F-dominates tuple s≠t, denoted by t ≺F s, iff

∀f∈F. f(t)≤f(s), with at least one strict inequality

§ When F≡M then ≺F ≡ ≺

[Ciaccia and Martinenghi, VLDB 2017]

ND and PO

§ Skyline as non-dominated tuples:

§ Non-Dominated Skyline (ND), given F:

§ Skyline as tuples optimal wrt a monotone scoring function:

§ Potentially Optimal Skyline (PO), given F:

§ Extreme cases:

• F≡Mà ND=PO=Sky

• F={ f } à ND≈PO≈top-1 query wrt. scoring function f

attribute Ai; t is also written as hv1, . . . , vdi, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t � s, if
(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj] < s[Aj]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A scor-
ing function f is a function f : [0, 1]d ! R+. For a tuple
t = hv1, . . . , vdi over R, the value f(v1, . . . , vd) is called the
score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .

3

attribute Ai; t is also written as hv1, . . . , vdi, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t � s, if
(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj] < s[Aj]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A scor-
ing function f is a function f : [0, 1]d ! R+. For a tuple
t = hv1, . . . , vdi over R, the value f(v1, . . . , vd) is called the
score of t, also written f(t). Function f is monotone if, for
any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r) = {t 2 r | 9f 2 M. 8s 2 r. s 6= t ! f(t) < f(s)}.
(3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES

We now adopt the two di↵erent views of skylines to intro-
duce two corresponding operators, called restricted skyline
operators, whose behavior is the same as Sky, but applied
to a limited set of monotone scoring functions F ✓ M. In
the following, we always assume F to be non-empty. In or-
der to precisely characterize the notions to be presented in
this paper, we introduce the following property regarding
sets of scoring functions.

Definition 3 (Tuple-distinguishing set). A set F

of scoring functions is said to be tuple-distinguishing if the
following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also
captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Assume d = 2 and consider tuples t = h0.5, 0.5i,
s = h0, 1i, the monotone scoring functions f1(x, y) = x + y
and f2(x, y) = x + 2y, and the set F = {f1, f2}. We have
t �F s, since f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2,
and therefore the condition of Definition 4 holds.
However, t 6�M s, since M includes, among others, f3(x, y) =

2x+ y, for which f3(t) = 1.5 > f3(s) = 1, thereby violating
the condition of Definition 4.

With Definition 4 at hand, we are now ready to introduce
the first restricted skyline operator, called non-dominated
restricted skyline, which consists of a set of non-F-dominated
tuples, as specified in Definition 5 below.

Definition 5 (nd-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The non-dominated restricted sky-
line of r with respect to F , denoted by nd-Sky(r;F), is de-
fined as the following set of tuples:

nd-Sky(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second restricted skyline operator, called potentially

optimal restricted skyline, returns the tuples that are best
(i.e., top 1) according to some scoring function in F , as
specified in Definition 6 below.

Definition 6 (po-Sky). Let F ✓ M be a set of mono-
tone scoring functions. The potentially optimal restricted
skyline of r with respect to F , denoted by po-Sky(r;F), is
defined as:

po-Sky(r;F) =

{t 2 r | 9f 2 F . 8s 2 r. s 6= t ! f(t) < f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd-Sky(r;F) and
po-Sky(r;F) for any given instance r and set of monotone
scoring functions F .

3

(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj] < s[Aj]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A

scoring function f is a function f : [0, 1]d ! R+
. For

a tuple t = hv1, . . . , vdi over R, the value f(v1, . . . , vd)
is called the score of t, also written f(t). Function f is

monotone if, for any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-

noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r)={t2r | 9f 2M. 8s2r. s 6= t!f(t)<f(s)}. (3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES
We now adopt the two di↵erent views of skylines to intro-

duce two corresponding operators, called restricted skyline

operators (R-skylines), whose behavior is the same as Sky,
but applied to a limited set of monotone scoring functions
F ✓ M. In the following, we always assume F to be non-
empty. In order to precisely characterize the notions to be
presented in this paper, we introduce the following property
regarding sets of scoring functions.

Definition 3. A set F of scoring functions is said to be

tuple-distinguishing if the following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also

captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-

tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Consider the tuples t = h0.5, 0.5i, s = h0, 1i,
the monotone scoring functions f1(x, y) = x+y and f2(x, y)
= x+ 2y, and the set F = {f1, f2}. We have t �F s, since
f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2, and therefore

the condition of Definition 4 holds.

However, t 6�M s, since M includes, among others,

f3(x, y) = 2x+y, for which f3(t) = 1.5 > f3(s) = 1, thereby
violating the condition of Definition 4.

With Definition 4 at hand, we can now introduce the first
R-skyline operator, called non-dominated restricted skyline,
which consists of the set of non-F-dominated tuples in r.

Definition 5 (nd). Let F ✓ M be a set of monotone

scoring functions. The non-dominated restricted skyline of

r with respect to F , denoted by nd(r;F), is defined as the

following set of tuples:

nd(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second R-skyline operator, called potentially optimal

restricted skyline, returns the tuples that are best (i.e., top
1) according to some scoring function in F .

Definition 6 (po). Let F ✓ M be a set of monotone

scoring functions. The potentially optimal restricted skyline
of r with respect to F , denoted by po(r;F), is defined as:

po(r;F)={t2r | 9f 2F . 8s2r. s 6= t!f(t)<f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd(r;F) and

po(r;F) for any given instance r and set of monotone

scoring functions F .

3.1 Basic Properties
In the following we present basic facts about nd and po,

and further investigate their relationship with Sky.
As a direct consequence of the definitions, we observe that,

when the set F of scoring functions under consideration co-
incides with M, it is po(r;M) = nd(r;M) = Sky(r). In
general, though, there is a containment relationship, as in-
dicated in Proposition 1 below.1

Proposition 1. For any set F of monotone scoring

functions, it is po(r;F) ✓ nd(r;F) ✓ Sky(r).
1All proofs are omitted in the interest of space.

(i) 8i. 1  i  d ! t[Ai]  s[Ai], and (ii) 9j. 1  j 

d ^ t[Aj] < s[Aj]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t 2 r | @s 2 r. s � t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A

scoring function f is a function f : [0, 1]d ! R+
. For

a tuple t = hv1, . . . , vdi over R, the value f(v1, . . . , vd)
is called the score of t, also written f(t). Function f is

monotone if, for any tuples t, s over R, the following holds:

(8i 2 {1, . . . , d}. t[Ai]  s[Ai]) ! f(t)  f(s). (2)

The (infinite) set of all monotone scoring functions is de-

noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
h0, . . . , 0i, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r)={t2r | 9f 2M. 8s2r. s 6= t!f(t)<f(s)}. (3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are di↵erent.

3. RESTRICTED SKYLINES
We now adopt the two di↵erent views of skylines to intro-

duce two corresponding operators, called restricted skyline

operators (R-skylines), whose behavior is the same as Sky,
but applied to a limited set of monotone scoring functions
F ✓ M. In the following, we always assume F to be non-
empty. In order to precisely characterize the notions to be
presented in this paper, we introduce the following property
regarding sets of scoring functions.

Definition 3. A set F of scoring functions is said to be

tuple-distinguishing if the following holds:

8t, s 2 [0, 1]d. t 6= s ! (9f 2 F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two di↵erent tuples, i.e., if there is
at least a function in F associating two di↵erent scores to
two di↵erent tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also

captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.
We now extend the notion of dominance introduced in

Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-

tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t �F s, i↵ 8f 2 F . f(t)  f(s).

Example 2. Consider the tuples t = h0.5, 0.5i, s = h0, 1i,
the monotone scoring functions f1(x, y) = x+y and f2(x, y)
= x+ 2y, and the set F = {f1, f2}. We have t �F s, since
f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2, and therefore

the condition of Definition 4 holds.

However, t 6�M s, since M includes, among others,

f3(x, y) = 2x+y, for which f3(t) = 1.5 > f3(s) = 1, thereby
violating the condition of Definition 4.

With Definition 4 at hand, we can now introduce the first
R-skyline operator, called non-dominated restricted skyline,
which consists of the set of non-F-dominated tuples in r.

Definition 5 (nd). Let F ✓ M be a set of monotone

scoring functions. The non-dominated restricted skyline of

r with respect to F , denoted by nd(r;F), is defined as the

following set of tuples:

nd(r;F) = {t 2 r | @s 2 r. s �F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where � has been replaced by �F .
Observe that, clearly, �M coincides with �.
The second R-skyline operator, called potentially optimal

restricted skyline, returns the tuples that are best (i.e., top
1) according to some scoring function in F .

Definition 6 (po). Let F ✓ M be a set of monotone

scoring functions. The potentially optimal restricted skyline
of r with respect to F , denoted by po(r;F), is defined as:

po(r;F)={t2r | 9f 2F . 8s2r. s 6= t!f(t)<f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd(r;F) and

po(r;F) for any given instance r and set of monotone

scoring functions F .

3.1 Basic Properties
In the following we present basic facts about nd and po,

and further investigate their relationship with Sky.
As a direct consequence of the definitions, we observe that,

when the set F of scoring functions under consideration co-
incides with M, it is po(r;M) = nd(r;M) = Sky(r). In
general, though, there is a containment relationship, as in-
dicated in Proposition 1 below.1

Proposition 1. For any set F of monotone scoring

functions, it is po(r;F) ✓ nd(r;F) ✓ Sky(r).
1All proofs are omitted in the interest of space.

ND and PO

§ k-Skyband as non-dominated tuples:
• Tuples dominated by less than k tuples

§ Non-Dominated k-Skyband (NDk), given F:
• Tuples F-dominated by less than k tuples

§ k-Skyband as tuples optimal wrt a monotone scoring function:
• Tuples that are top k for some monotone scoring function

§ Potentially Optimal k-Skyband (POk), given F:
• Tuples that are top k for some monotone scoring function in F

§ Extreme cases:
• F≡Mà NDk=POk=Skyk
• F={ f } à NDk≈POk≈top-k query wrt. scoring function f

Restricted skylines – example (cars)

CarID Price (⇥103) Mileage (⇥103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5

Table 2: The UsedCars relation.

to some function in F . While nd-Sky and po-Sky coincide
and capture the traditional skyline when F is the family of
all monotone scoring functions, their behaviors di↵er when
subsets thereof are considered. R-skylines capture in a single
framework all the practically relevant approaches to multi-
objective optimization, traditionally dealt with separately,
and enable the study of other scenarios of practical inter-
est. For example, in multicriteria analysis, decision makers
may encounter objectives in which the model parameters
lack completeness or confidence, and are characterized by
complex preferences between, e.g., attribute weights, such
as “attribute C is more important than attribute A, but no
more than twice as important” [18]. Other complex con-
straints characterizing the objective might come from pref-
erence elicitation from a crowd (see, e.g., [5] and references
therein for strategies for collecting preferences between tu-
ples).

Example 1. For the relation UsedCars(ID,Price,Mileage)
in Table 2, a skyline query over the attributes Price and
Mileage (both to be minimized) will return cars C1, C2,
C4, C6, and C7. Now assume that your preferences con-
sider Price more important than Mileage (in which case a
p-skyline query would just return car C1, since it has the
minimum price). By considering the family of scoring func-
tions F = {wP Price + wMMileage | wP � wM}, nd-Sky,
i.e., the set of non-F-dominated cars, includes C1, C2, and
C4, with only C1 and C4 being also part of po-Sky. Al-
though in the skyline, both C6 and C7 are F-dominated by
C4, which is reasonable since they both have a relatively high
price. On the other hand, car C2 is non-F-dominated, yet
there is no combination of weights values that can make it a
top-1 result.

The main contributions of this paper are as follows.
1. We introduce two operators generalizing both skyline

and ranking queries.
2. We study the properties of these operators, called R-

skylines, and in particular their relationship with skyline
and top-1 queries, as well as their behavior as the set F of
scoring functions under consideration varies.

3. We study the application of R-skylines when the scor-
ing functions in F are Lp norms or, generally, functions that
are linear in the weights (or monotonic transforms thereof).

4. We discuss two alternative approaches to computing
R-skylines based on Linear Programming, one addressing a
direct F-dominance test between tuples, the other charac-
terizing the “dominance region” wrt. F of a tuple.

5. We evaluate the e↵ectiveness of R-skylines (i.e., their
ability to restrict the set of tuples of interest) in a number
of di↵erent experimental settings including synthetic as well
as real datasets; we also discuss di↵erent implementations
of the operators and test their e�ciency in the di↵erent sce-
narios.

Related work. Due to the limits that each of the basic
methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily find-
ing interesting results in large datasets.
Several techniques have been proposed for reducing the

skyline size, a recent survey of which can be found in [11].
Among them, distance-based representative skylines [20] aim
to determine the k tuples in the skyline for which the max-
imum distance to the excluded skyline points is minimized.
Since this problem is NP-hard, only approximate solutions
can be provided. Furthermore, the method is also sensitive
to the specific metric used to measure distance among tu-
ples. Another approach to select a limited subset of skyline
tuples is to assign to each of them a measure of interesting-
ness based on some specific properties. Top-k Representa-
tive Skyline Points (RSP) [10] are the k skyline points that
together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more
dimensions, thus approximate solutions are adopted in prac-
tice. Top-k dominating queries [21] return the k tuples that
dominate the highest number of tuples in the dataset, i.e.,
they rank tuples according to the number of other tuples
they dominate. Besides the high computational cost in-
curred by this approach if the input dataset is not indexed, a
major drawback is that the score of a tuple depends on how
worse tuples are distributed, a problem that this method
shares with top-k RSP.
Among the methods that only rely on the order proper-

ties of skylines, i.e., without any reference to the actual un-
derlying attribute domains (which can consequently also be
categorical), we mention p-skylines and trade-o↵ skylines.
P-skyline (or Prioritized skyline) queries [14] are a gener-
alization of skyline queries in which the user can specify
that some attributes are more important than others, by re-
specting the syntax of so-called p-expressions. In practice, a
p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the
size of the result, p-skylines usually contain many fewer tu-
ples than skylines. P-skylines can be e�ciently computed
by taking advantage of the reduced cardinality of the result,
i.e., with an output-sensitive algorithm [13]. The idea of
trade-o↵ skylines [12] is similar to the one we adopt in this
paper. However, while we consider numerical domains and
consequently numerical trade-o↵s, [12] adopts the view of
qualitative trade-o↵s. Although the latter has the advan-
tage of being also applicable to categorical attributes, the
price to be paid is increased computational complexity.
Somehow related to what we study in this paper are those

works on top-k queries in which the scoring function is not
univocally defined, e.g., [22, 16]. Along these lines, [19] stud-
ies representative orderings (such as the most probable or-
dering) and their stability wrt. a change of parameters, by
assuming that the set of parameters (weights) is a random
variable with a uniform distribution.

2. PRELIMINARIES

Consider a relational schema R(A1, . . . , Ad), with d � 1.
Without loss of generality, we assume that the domain of
each attribute Ai is [0, 1], since each numeric domain could
be normalized in this interval. In this paper, we consider
lower values to be better than higher ones, but the opposite
convention would of course also be possible. A tuple t over
R is a function that associates a value vi in [0, 1] with each

2

§ Sky = {C1, C2, C4, C6, C7}
• C2 ≺ C3 and C4 ≺ C5

§ ND = {C1, C2, C4}
• C4 ≺F C6 and C4 ≺F C7

§ PO = {C1, C4}
No allowed combination of
weights makes C2 the top car

●
●

●●

●

●

○

○

●
●

●●

●

●

○

○

� �� �� �� ��
�

��

��

��

��

����� × ����

�
���
��
�
×
��
��

��

��

��

��

��

��

��

● ���∖��

● ��∖��

● ��

��

��

�(�)=(���)

�(�)=(���)

��� ��� ��� ���

���

���

���

���

Allowed weights:
convex polytope in the weight space

F-dominance regions

§ The F-dominance region of t
• set of all points F-dominated by t

§ Example: F = {quadratic functions with w1 + w2 ≥ w3}

• t’ is not in the F-dominance region of t
– and thus not F-dominated by it

the cost of the most expensive component (i.e., vertex enu-
meration of a polytope) of the calculation of F-dominance
regions has to be paid just once for all tuples.

In order to compute DR(t;LC
p), a fundamental observa-

tion is that, for any set C of linear constraints on weights,
W(C) is a convex polytope contained in the standard (or
unit) (d� 1)-simplex.1 We have the following major result.

Theorem 8 (F-dominance region). Let p 2 N and
C = {C1, . . . , Cc} be a set of linear constraints on weights,
where Cj =

Pd
i=1 ajiwi  kj (j 2 {1, . . . , c}). Let W (1), . . . ,W (q)

be the vertices of W(C). The dominance region DR(t;LC
p)

of a tuple t under L
C
p is the locus of points s defined by the

q inequalities:

dX

i=1

w(`)
i s[Ai]

p
�

dX

i=1

w(`)
i t[Ai]

p, ` 2 {1, . . . , q}. (20)

Proof. Since W(C) is convex, any W 2 W(C) can be written
as a convex combination of the vertices, i.e., W =

P
` b`W

(`),
with b` � 0, ` 2 {1, . . . , q}, and

P
` b` = 1, from which the

result immediately follows.

As a direct consequence of Definition 7, DR(t;F) is a closed
region.

Example 9. Let d = 2, p = 1, and consider tuples t1 =
h0.3, 0.6i, t3 = h0.5, 0.2i, t4 = h0.6, 0.15i from Example 3.
For C = {w1 � w2} and considering that w1 + w2 = 1 and
0  w1, w2  1, the vertices of W(C) are W (1) = (1, 0) and
W (2) = (0.5, 0.5). Figure 1a shows the tuples along with
their L

C
1 -dominance regions, while Figure 1b shows W(C).

By Theorem 8, DR(t3;L
C
1) is characterized by the system of

inequalities:

{s[A1] � 0.5, s[A1] + s[A2] � 0.7}. (21)

Tuple t4 satisfies (21) and thus t3 �LC
1
t4. For tuple t1, the

system becomes:

{s[A1] � 0.3, s[A1] + s[A2] � 0.9}. (22)

Here, t4 does not satisfy (22) and therefore t1 6�LC
1
t4.

As Example 9, Figure 1a and Inequalities (20) suggest, the
“shape” of DR(t;LC

p) (modulo cropping in the [0, 1]d hy-
percube) is independent of t, since the left-hand sides are
the same and the right-hand sides are, for any given t, a
constant.

Example 10. For a non-linear example, let d = 3, p =
2, and C = {w1 + w2 � w3}. The vertices of W(C) are:
W (1) = h1, 0, 0i, W (2) = h0, 1, 0i, W (3) = h0.5, 0, 0.5i, and
W (4) = h0, 0.5, 0.5i. For t = h0.5, 0.5, 0.5i, DR(t;LC

2) is
characterized by:

{ s[A1]
2
� 0.25, s[A2]

2
� 0.25,

s[A1]
2 + s[A3]

2
� 0.5, s[A2]

2 + s[A3]
2
� 0.5 }.

(23)

Therefore, tuple t0 = h0.7, 0.5, 0.3i is not L
C
2 -dominated by

t, as the last inequality in (23) is not satisfied. See Figure 2
for a graphical representation.
1Note that the standard (d � 1)-simplex is a (d � 1)-
dimensional region in Rd.

(a) F-dominance region

DR(t,F).

(b) W(C) (in gray) on the 2-

simplex.

Figure 2: Example 10 – tuples and weights in [0, 1]d, d = 3, C =

{w1 � w2}, F = LC
2 .

The only significant overhead introduced by this approach
is the enumeration of the vertices of W(C). However, due
to the above observation, this has to be done just once.
For any fixed value of d, the number of vertices is at most
O(cbd/2c), where c is the number of constraints, but there
exists polytopes with as few as O(c1/bd/2c) vertices [9]. The
vertex enumeration problem is NP-hard in general and it is
not known whether for the special case of bounded polytopes
(like W(C)) an algorithm exists with PTIME input-output
complexity; yet, a PTIME algorithm can be used in simpler
cases [1].
As with Theorem 7, even Theorem 8 also holds for the

family of linear functions wrt. the weights.

4.2 Computing potentially optimal tuples

We observe that, for any set F , po-Sky(r;F) can be com-
puted starting from nd-Sky(r;F) by retaining only the tu-
ples that are not F-dominated by any “virtual” tuple ob-
tained by combining other tuples in nd-Sky(r;F). When F

belongs to the L
C
p family with linear constraints C, this can

be done again e�ciently by solving an LP problem.

Theorem 11 (Potential optimality test). Let p be
a finite positive integer, C a set of linear constraints on
weights. Let W (1), . . . ,W (q) be the vertices of W(C) and let
nd-Sky(r;LC

p) = {t1, t2, . . . , t�, t}. Then, t 2 po-Sky(r;LC
p)

i↵ there is no convex combination s of {t1, . . . , t�} such that
s �LC

p
t, i.e., i↵ the following linear system in the unknowns

↵ = (↵1, . . . ,↵�) is unsatisfiable:

Pd
i=1 w

(`)
i (

P�
j=1 ↵jtj [Ai]

p) 
Pd

i=1 w
(`)
i t[Ai]

p

` 2 {1, . . . , q} (24)

↵j 2 [0, 1] j 2 {1, . . . ,�}
P�

i=1 ↵j = 1.

Proof. (Sketch) Let t 2 po-Sky(r;LC
p) and assume that the

above system is satisfiable with ↵⇤ = (↵⇤
1, . . . ,↵

⇤
�). By hy-

pothesis, there exists W 2 W(C) such that
Pd

i=1 wit[Ai]
p <Pd

i=1 witj [Ai]
p, j 2 {1, . . . ,�}. This implies that, 8� =

(�1, . . . ,��), �j 2 [0, 1], j 2 {1, . . . ,�},
P�

j=1 �j = 1, it is

also
Pd

i=1 wit[Ai]
p <

Pd
i=1 wi(

P�
j=1 �jtj [Ai]

p). By taking
� = ↵⇤ we derive a contradiction after observing, as in the
proof of Theorem 8, that any W 2 W(C) can be written as
a convex combination of the vertices of the polytope.

6

Allowed weights:
convex polytope in the weight space

Checking F-dominance

§ Common scoring functions are linear in the weights:
f p =!

i
wigi p i

§ For these functions and linear constraints on the weights,
checking p ≺F q can be done in two ways:
1. by solving a linear program, or
2. by verifying if q is in the F-dominance region of p

§ The second approach is faster, but requires computing the
vertices of a convex polytope in the weight space
• But this has to be done just once for a query

§ Let W(j) be the j-th vertex of the polytope. Then:

p ≺F q iff "j ∑i wi
(j)gi p i ≤ ∑i wi

(j)gi q i

j-th "vertex score" of p

Computing NDk in multi-source scenarios

§ In a centralized setting, NDk is essentially computed as
Skyk by replacing dominance with F-dominance

§ In a distributed (multi-source) setting, we reconcile
the FA and TA algorithms through F-dominance:

Flexible Score Aggregation (FSA)

§ FSA is instance-optimal for any family F
• When F = {f} it reduces to TA
• When F = M it reduces to FA

• Do a sorted access and corresponding random accesses for
tuple t

• Keep t if less than k objects F-dominate t
• i.e., t belongs to the current NDk(r;F) set

• Stop when t ≺F t holds for k objects (t is the threshold point)

[Ciaccia and Martinenghi, CIKM 2018]

Wrap-up

Wrap-up

§ All approaches to multi-criteria queries have pros and cons

§ Reconciling ranking queries and skylines offers improvements:
• Control over the importance of attributes
• Much better control over the cardinality of the result
• Easier specification of functions than top-k queries
• Efficiency often better than skylines (but not top-k queries)

§ But there is much more. For instance:
• Cases of uncertainty in the ranking (what to do when scores or

weights are not a precise value but an interval?)
• Ranking heterogeneous objects across different sources (rank

join problem)
• Including notions such as proximity and diversification of objects

in the ranking
• Ranking queries from the point of view of the seller: which

weights make my candidates win (reverse top-k)?

Main References
Historical papers
§ Jean-Charles de Borda

Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, Paris 1781

§ Nicolas de Condorcet
Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785

§ Kenneth J. Arrow
A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328–346, 1950

Rank aggregation and ranking queries
§ Ronald Fagin, Ravi Kumar, D. Sivakumar

Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312

§ Ronald Fagin
Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10

§ Ronald Fagin, Amnon Lotem, Moni Naor
Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines
§ Stephan Börzsönyi, Donald Kossmann, Konrad Stocker

The Skyline Operator. ICDE 2001: 421-430

§ Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang
Skyline with Presorting. ICDE 2003: 717-719

Main References
Extensions of skylines: restricted skylines, k-skybands
§ Paolo Ciaccia, Davide Martinenghi

Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)

§ Paolo Ciaccia, Davide Martinenghi
FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

§ Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger
Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Rank join
§ Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid

Supporting Top-k Join Queries in Relational Databases. VLDB 2003: 754-765

§ Karl Schnaitter, Neoklis Polyzotis
Evaluating rank joins with optimal cost. PODS 2008: 43-52

Extensions of ranking queries: uncertainty, proximity, diversity, reverse top-k
§ Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi

Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011:
805-816

§ Davide Martinenghi, Marco Tagliasacchi
Proximity Rank Join. PVLDB 3(1): 352-363 (2010)

§ Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi
Top-k bounded diversification. SIGMOD Conference 2012: 421-432

§ Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Nørvåg:
Reverse top-k queries. ICDE 2010: 365-376

Extras

Complexity of computing ND and PO

§ Algorithmic variants for ND
• unsorted vs. sorted
• Linear Programming vs. Vertex Enumeration
• 1 phase (check ≺F directly) vs. 2 (first check ≺ then ≺F)

§ Parameters
• c (constraints), d (dimensions), N (tuples), q (vertices)
• ve(c) = complexity of vertex enumeration given c

constraints (NP-hard)
• lp(x, y) = complexity of Linear Programming with x

inequalities and y variables

§ ND:

§ PO:

Algorithm 4: POND for po.

Input: relation r, constraints C, family F = L
C
p . Output: po(r;F).

1. let PO := nd(r;F) // including Prepare as in Algorithm 1

2. let �̃ := 2; let lastRound := false
3. while(¬lastRound)

4. if �̃ � |PO|� 1 then lastRound := true

5. for each t in PO in reverse order // candidate F-dominated tuple

6. if 9s. s �F t, s is convex comb. of the first min(�̃, |PO|� 1)

tuples in PO \ {t} then let PO := PO \ {t}

7. let �̃ := �̃ · 2
8. return PO

Table 3: Time complexity of algorithms for computing nd and po.

algorithm first phase second phase

ULP2 O(N2) O(|Sky|2 · lp(c, d))
UVE2 O(N2) O(ve(c) + |Sky|2 · q)
SLP2 O(N · (logN + |Sky|)) O(|Sky| · |nd| · lp(c, d)))
SVE2 O(N · (logN + |Sky|)) O(ve(c) + |Sky| · |nd| · q)

SVE1, SVE1F O(ve(c) +N · (logN + |nd| · q))
POND O(|nd| · log |nd| · lp(q, |nd|))

rithm 4 (POND, i.e. po via nd), to reduce as early as possi-
ble the set of candidate potentially optimal tuples (PO) by
adopting the following heuristics: i) we start with a con-
vex combination of only �̃ = 2 tuples (line 2), which will
give rise to smaller, faster-to-solve systems (17) for testing
F-dominance; as long as �̃ < |PO|� 1, this condition is only
su�cient for pruning, but not necessary; after each round,
we double �̃ (line 7); ii) we sortedly enumerate candidate
F-dominated tuples from PO in reverse order (line 5), as
the worst tuples wrt. the ordering are the most likely to
be F-dominated; iii) using linear system (17), we check the
existence of a convex combination of the first �̃ tuples in
PO (line 6), as they are the best wrt. the ordering and thus
more likely to F-dominate other tuples. After this early
pruning, in the last round (enabled by line 4) all the re-
maining tuples are checked against a convex combination of
all the other tuples still in po, which is now a necessary and
su�cient condition for pruning, as in Theorem 11.

5.3 Considerations about complexity
We provide details about the input-output worst-case

complexity of our algorithms when both the number of tu-
ples N and the number of constraints c vary. In order
to remain parametric wrt. auxiliary problems we have to
solve, namely vertex enumeration and F-dominance via lin-
ear programming, we consider that they will be solved by
algorithms whose worst-case complexity is in O(ve(c)) and
O(lp(x, y)), respectively, where x is the number of LP in-
equalities and y is the number of variables in the LP prob-
lem. The vertex enumeration problem is NP-hard in gen-
eral and it is not known whether for the special case of
bounded polytopes (like W(C)) an algorithm exists with
PTIME input-output complexity. We also observe that, for
any fixed value of d, the number of vertices q is at most
O(cbd/2c) (see [10] and references therein).

Table 3 summarizes our results. For brevity, we only dis-
cuss ULP2, SVE2, SVE1, SVE1F, and POND. For the 2-phase
algorithms, the complexity of the first phase is that of the
corresponding skyline algorithm [9]. In the second phase,
ULP2 performs at most O(|Sky|2) F-dominance tests, each
of which costs O(lp(c, d)). On the other hand, SVE2 first enu-

merates the vertices ofW(C), which costsO(ve(c)), and then
will perform at most |Sky| · |nd| F-dominance tests using
Theorem 8, each of which costs O(q), where q is the num-
ber of vertices of W(C). The worst-case complexity of SVE1
and SVE1F is the same, since, besides enumerating vertices
of W(C) and sorting the dataset, both execute O(N · |nd|)
F-dominance tests. From the comparison between SVE2 and
SVE1 (and SVE1F), we argue that the larger the skyline, the
more SVE2 will be penalized.
The POND algorithm will execute the loop at most

dlog2 |nd|e times, which happens in the very unlikely case
in which most of the tuples in nd \ po appear before those
in po in the ordering; at each iteration, POND will execute at
most |nd| F-dominance tests, the cost of which is bounded
by O(lp(q, |nd|)), from which the result follows.
In terms of space, besides that needed by the 2-phase

approaches to store the intermediate result Sky, and that
required by the nd window, the only additional overhead
is introduced by the specific procedures used to enumerate
vertices and test F-dominance by LP. Notice that the input
to vertex enumeration is a set of c constraints, whereas the
output is a set of q vertices. On the other hand, the largest
LP problem (corresponding to the last round of the POND
algorithm) will be a matrix of size at most q ⇥ (|nd|� 1).

6. EXPERIMENTS
In this section we aim to assess the e�ciency of the var-

ious algorithmic alternatives for computing R-skylines, and
to understand how R-skylines compare to both skylines and
ranking queries. For a comprehensive analysis, we measure
e�ciency and e↵ectiveness in a number of di↵erent scenar-
ios, and study in particular how they are a↵ected by i) data
distribution, ii) dataset size, iii) number of dimensions, and
iv) number of constraints. The relevant parameters are
shown in Table 4, with defaults in bold.

Table 4: Operating parameters for performance evaluation (defaults,

when available, are in bold).

Full name Tested value
Distribution synthetic: ANT, UNI; real: NBA, HOU
Synthetic dataset size (N) 10K, 50K, 100K, 500K, 1M
of dimensions (d) 2, 4, 6, 8, 10
of constraints (c) 1, 2, 3, 4, 5 (default: d/2)
Parameter of Lp norm (p) 1, 2, 3, 4, 5

6.1 Datasets and constraints
We use two families of datasets: synthetic datasets and

real datasets. Synthetic datasets are generated by the stan-
dard data generation tool used in [1]. For any value of d and
N mentioned in Table 4, we produced two d-dimensional
datasets of size N with values in the [0, 1] interval; one
of these datasets (UNI) has values distributed uniformly in
[0, 1], while the other (ANT) has values anti-correlated across
di↵erent dimensions – informally, points that are good in
one dimension are bad in one or all of the other dimensions.
In the interest of space, we do not include correlated syn-
thetic datasets in our study, as they are the least challenging
when it comes to computing skyline points.
The real datasets analyzed here are two well-known

datasets used in the context of skylines.

at most

Algorithm 4: POND for po.

Input: relation r, constraints C, family F = L
C
p . Output: po(r;F).

1. let PO := nd(r;F) // including Prepare as in Algorithm 1

2. let �̃ := 2; let lastRound := false
3. while(¬lastRound)

4. if �̃ � |PO|� 1 then lastRound := true

5. for each t in PO in reverse order // candidate F-dominated tuple

6. if 9s. s �F t, s is convex comb. of the first min(�̃, |PO|� 1)

tuples in PO \ {t} then let PO := PO \ {t}

7. let �̃ := �̃ · 2
8. return PO

Table 3: Time complexity of algorithms for computing nd and po.

algorithm first phase second phase

ULP2 O(N2) O(|Sky|2 · lp(c, d))
UVE2 O(N2) O(ve(c) + |Sky|2 · q)
SLP2 O(N · (logN + |Sky|)) O(|Sky| · |nd| · lp(c, d)))
SVE2 O(N · (logN + |Sky|)) O(ve(c) + |Sky| · |nd| · q)

SVE1, SVE1F O(ve(c) +N · (logN + |nd| · q))
POND O(|nd| · log |nd| · lp(q, |nd|))

rithm 4 (POND, i.e. po via nd), to reduce as early as possi-
ble the set of candidate potentially optimal tuples (PO) by
adopting the following heuristics: i) we start with a con-
vex combination of only �̃ = 2 tuples (line 2), which will
give rise to smaller, faster-to-solve systems (17) for testing
F-dominance; as long as �̃ < |PO|� 1, this condition is only
su�cient for pruning, but not necessary; after each round,
we double �̃ (line 7); ii) we sortedly enumerate candidate
F-dominated tuples from PO in reverse order (line 5), as
the worst tuples wrt. the ordering are the most likely to
be F-dominated; iii) using linear system (17), we check the
existence of a convex combination of the first �̃ tuples in
PO (line 6), as they are the best wrt. the ordering and thus
more likely to F-dominate other tuples. After this early
pruning, in the last round (enabled by line 4) all the re-
maining tuples are checked against a convex combination of
all the other tuples still in po, which is now a necessary and
su�cient condition for pruning, as in Theorem 11.

5.3 Considerations about complexity
We provide details about the input-output worst-case

complexity of our algorithms when both the number of tu-
ples N and the number of constraints c vary. In order
to remain parametric wrt. auxiliary problems we have to
solve, namely vertex enumeration and F-dominance via lin-
ear programming, we consider that they will be solved by
algorithms whose worst-case complexity is in O(ve(c)) and
O(lp(x, y)), respectively, where x is the number of LP in-
equalities and y is the number of variables in the LP prob-
lem. The vertex enumeration problem is NP-hard in gen-
eral and it is not known whether for the special case of
bounded polytopes (like W(C)) an algorithm exists with
PTIME input-output complexity. We also observe that, for
any fixed value of d, the number of vertices q is at most
O(cbd/2c) (see [10] and references therein).

Table 3 summarizes our results. For brevity, we only dis-
cuss ULP2, SVE2, SVE1, SVE1F, and POND. For the 2-phase
algorithms, the complexity of the first phase is that of the
corresponding skyline algorithm [9]. In the second phase,
ULP2 performs at most O(|Sky|2) F-dominance tests, each
of which costs O(lp(c, d)). On the other hand, SVE2 first enu-

merates the vertices ofW(C), which costsO(ve(c)), and then
will perform at most |Sky| · |nd| F-dominance tests using
Theorem 8, each of which costs O(q), where q is the num-
ber of vertices of W(C). The worst-case complexity of SVE1
and SVE1F is the same, since, besides enumerating vertices
of W(C) and sorting the dataset, both execute O(N · |nd|)
F-dominance tests. From the comparison between SVE2 and
SVE1 (and SVE1F), we argue that the larger the skyline, the
more SVE2 will be penalized.
The POND algorithm will execute the loop at most

dlog2 |nd|e times, which happens in the very unlikely case
in which most of the tuples in nd \ po appear before those
in po in the ordering; at each iteration, POND will execute at
most |nd| F-dominance tests, the cost of which is bounded
by O(lp(q, |nd|)), from which the result follows.
In terms of space, besides that needed by the 2-phase

approaches to store the intermediate result Sky, and that
required by the nd window, the only additional overhead
is introduced by the specific procedures used to enumerate
vertices and test F-dominance by LP. Notice that the input
to vertex enumeration is a set of c constraints, whereas the
output is a set of q vertices. On the other hand, the largest
LP problem (corresponding to the last round of the POND
algorithm) will be a matrix of size at most q ⇥ (|nd|� 1).

6. EXPERIMENTS
In this section we aim to assess the e�ciency of the var-

ious algorithmic alternatives for computing R-skylines, and
to understand how R-skylines compare to both skylines and
ranking queries. For a comprehensive analysis, we measure
e�ciency and e↵ectiveness in a number of di↵erent scenar-
ios, and study in particular how they are a↵ected by i) data
distribution, ii) dataset size, iii) number of dimensions, and
iv) number of constraints. The relevant parameters are
shown in Table 4, with defaults in bold.

Table 4: Operating parameters for performance evaluation (defaults,

when available, are in bold).

Full name Tested value
Distribution synthetic: ANT, UNI; real: NBA, HOU
Synthetic dataset size (N) 10K, 50K, 100K, 500K, 1M
of dimensions (d) 2, 4, 6, 8, 10
of constraints (c) 1, 2, 3, 4, 5 (default: d/2)
Parameter of Lp norm (p) 1, 2, 3, 4, 5

6.1 Datasets and constraints
We use two families of datasets: synthetic datasets and

real datasets. Synthetic datasets are generated by the stan-
dard data generation tool used in [1]. For any value of d and
N mentioned in Table 4, we produced two d-dimensional
datasets of size N with values in the [0, 1] interval; one
of these datasets (UNI) has values distributed uniformly in
[0, 1], while the other (ANT) has values anti-correlated across
di↵erent dimensions – informally, points that are good in
one dimension are bad in one or all of the other dimensions.
In the interest of space, we do not include correlated syn-
thetic datasets in our study, as they are the least challenging
when it comes to computing skyline points.
The real datasets analyzed here are two well-known

datasets used in the context of skylines.

Algorithm 4: POND for po.

Input: relation r, constraints C, family F = L
C
p . Output: po(r;F).

1. let PO := nd(r;F) // including Prepare as in Algorithm 1

2. let �̃ := 2; let lastRound := false
3. while(¬lastRound)

4. if �̃ � |PO|� 1 then lastRound := true

5. for each t in PO in reverse order // candidate F-dominated tuple

6. if 9s. s �F t, s is convex comb. of the first min(�̃, |PO|� 1)

tuples in PO \ {t} then let PO := PO \ {t}

7. let �̃ := �̃ · 2
8. return PO

Table 3: Time complexity of algorithms for computing nd and po.

algorithm first phase second phase

ULP2 O(N2) O(|Sky|2 · lp(c, d))
UVE2 O(N2) O(ve(c) + |Sky|2 · q)
SLP2 O(N · (logN + |Sky|)) O(|Sky| · |nd| · lp(c, d)))
SVE2 O(N · (logN + |Sky|)) O(ve(c) + |Sky| · |nd| · q)

SVE1, SVE1F O(ve(c) +N · (logN + |nd| · q))
POND O(|nd| · log |nd| · lp(q, |nd|))

rithm 4 (POND, i.e. po via nd), to reduce as early as possi-
ble the set of candidate potentially optimal tuples (PO) by
adopting the following heuristics: i) we start with a con-
vex combination of only �̃ = 2 tuples (line 2), which will
give rise to smaller, faster-to-solve systems (17) for testing
F-dominance; as long as �̃ < |PO|� 1, this condition is only
su�cient for pruning, but not necessary; after each round,
we double �̃ (line 7); ii) we sortedly enumerate candidate
F-dominated tuples from PO in reverse order (line 5), as
the worst tuples wrt. the ordering are the most likely to
be F-dominated; iii) using linear system (17), we check the
existence of a convex combination of the first �̃ tuples in
PO (line 6), as they are the best wrt. the ordering and thus
more likely to F-dominate other tuples. After this early
pruning, in the last round (enabled by line 4) all the re-
maining tuples are checked against a convex combination of
all the other tuples still in po, which is now a necessary and
su�cient condition for pruning, as in Theorem 11.

5.3 Considerations about complexity
We provide details about the input-output worst-case

complexity of our algorithms when both the number of tu-
ples N and the number of constraints c vary. In order
to remain parametric wrt. auxiliary problems we have to
solve, namely vertex enumeration and F-dominance via lin-
ear programming, we consider that they will be solved by
algorithms whose worst-case complexity is in O(ve(c)) and
O(lp(x, y)), respectively, where x is the number of LP in-
equalities and y is the number of variables in the LP prob-
lem. The vertex enumeration problem is NP-hard in gen-
eral and it is not known whether for the special case of
bounded polytopes (like W(C)) an algorithm exists with
PTIME input-output complexity. We also observe that, for
any fixed value of d, the number of vertices q is at most
O(cbd/2c) (see [10] and references therein).

Table 3 summarizes our results. For brevity, we only dis-
cuss ULP2, SVE2, SVE1, SVE1F, and POND. For the 2-phase
algorithms, the complexity of the first phase is that of the
corresponding skyline algorithm [9]. In the second phase,
ULP2 performs at most O(|Sky|2) F-dominance tests, each
of which costs O(lp(c, d)). On the other hand, SVE2 first enu-

merates the vertices ofW(C), which costsO(ve(c)), and then
will perform at most |Sky| · |nd| F-dominance tests using
Theorem 8, each of which costs O(q), where q is the num-
ber of vertices of W(C). The worst-case complexity of SVE1
and SVE1F is the same, since, besides enumerating vertices
of W(C) and sorting the dataset, both execute O(N · |nd|)
F-dominance tests. From the comparison between SVE2 and
SVE1 (and SVE1F), we argue that the larger the skyline, the
more SVE2 will be penalized.
The POND algorithm will execute the loop at most

dlog2 |nd|e times, which happens in the very unlikely case
in which most of the tuples in nd \ po appear before those
in po in the ordering; at each iteration, POND will execute at
most |nd| F-dominance tests, the cost of which is bounded
by O(lp(q, |nd|)), from which the result follows.
In terms of space, besides that needed by the 2-phase

approaches to store the intermediate result Sky, and that
required by the nd window, the only additional overhead
is introduced by the specific procedures used to enumerate
vertices and test F-dominance by LP. Notice that the input
to vertex enumeration is a set of c constraints, whereas the
output is a set of q vertices. On the other hand, the largest
LP problem (corresponding to the last round of the POND
algorithm) will be a matrix of size at most q ⇥ (|nd|� 1).

6. EXPERIMENTS
In this section we aim to assess the e�ciency of the var-

ious algorithmic alternatives for computing R-skylines, and
to understand how R-skylines compare to both skylines and
ranking queries. For a comprehensive analysis, we measure
e�ciency and e↵ectiveness in a number of di↵erent scenar-
ios, and study in particular how they are a↵ected by i) data
distribution, ii) dataset size, iii) number of dimensions, and
iv) number of constraints. The relevant parameters are
shown in Table 4, with defaults in bold.

Table 4: Operating parameters for performance evaluation (defaults,

when available, are in bold).

Full name Tested value
Distribution synthetic: ANT, UNI; real: NBA, HOU
Synthetic dataset size (N) 10K, 50K, 100K, 500K, 1M
of dimensions (d) 2, 4, 6, 8, 10
of constraints (c) 1, 2, 3, 4, 5 (default: d/2)
Parameter of Lp norm (p) 1, 2, 3, 4, 5

6.1 Datasets and constraints
We use two families of datasets: synthetic datasets and

real datasets. Synthetic datasets are generated by the stan-
dard data generation tool used in [1]. For any value of d and
N mentioned in Table 4, we produced two d-dimensional
datasets of size N with values in the [0, 1] interval; one
of these datasets (UNI) has values distributed uniformly in
[0, 1], while the other (ANT) has values anti-correlated across
di↵erent dimensions – informally, points that are good in
one dimension are bad in one or all of the other dimensions.
In the interest of space, we do not include correlated syn-
thetic datasets in our study, as they are the least challenging
when it comes to computing skyline points.
The real datasets analyzed here are two well-known

datasets used in the context of skylines.

Effectiveness of restricted skylines vs skylines

(a) ANT: dataset size N varies. (b) ANT: # of dimensions d varies.

⨯
⨯ ⨯ ⨯ ⨯○ ○ ○ ○ ○� � � � �

���

���

���

���

���

���

�����������

(�
��
��

)-
��
�/
��
�
��
���

⨯��

○ ��

(c) ANT: # of constraints c varies.

(d) UNI: dataset size N varies. (e) UNI: # of dimensions d varies. (f) UNI: # of constraints c varies.

(g) NBA: parameter p of Lp norm varies. (h) NBA: # of dimensions d varies. (i) NBA: # of constraints c varies.

Figure 4: Cardinality ratio between restricted skylines (po-Sky, nd-Sky) and Sky: UNI in (a)–(c); ANT in (d)–(f); NBA in (g), (h).

Figure 5: Correlation between nd-Sky/Sky cardinality ratio and per-

centage of preserved volume in the space of weights as the number of

constraints n varies.

instead of dominance tests).
As will be shown in Section 5.3.2, S strategies are faster

than U strategies (except perhaps for small datasets), and
VE is orders of magnitude faster than LP. Therefore, we shall
consider one-phase counterparts for SVE2 only. The pseu-
docode of SVE1 is shown in Algorithm 2. Instead of first com-
puting Sky and then carving nd-Sky out of it, SVE1 checks,
for every candidate L

C
p -dominated tuple s, first the easier

dominance (line 4) and then the harder �LC
p
-dominance

(line 7) against all non-dominated tuples in ND.
The last one-phase alternative we consider explores the

space of pairs of tuples in a dominant-“first” way (and is
thus denoted SVE1F), shown in Algorithm 3. It first enumer-
ates the candidate LC

p -dominant tuples (line 2), from best to
worst in the sorted relation, and then removes all candidate
L

C
p -dominated tuples that are dominated or �LC

p
-dominated

by it. The rationale behind SVE1F is that the strongest tu-
ples are likely to (�LC

p
-)dominate many tuples, and thus to

reduce the candidate L
C
p -dominated set early.

For the computation of po-Sky(r;LC
p), we start from the

tuples in nd-Sky(r;LC
p) and, by Theorem 11, we discard

any tuple t that is L
C
p -dominated by a convex combination

of tuples in nd-Sky(r;LC
p) \ {t}. However, checking L

C
p -

dominance via (24) may be prohibitively time consuming
when � = |nd-Sky(r;LC

p)|� 1 is large. We therefore try, in
Algorithm 4 (POND, i.e. po-Sky via nd-Sky), to reduce as
early as possible the set of candidate potentially optimal tu-
ples (PO) by adopting the following heuristics: i) we start
with a convex combination of only �̃ = 2 tuples (line 3),
which will give rise to smaller, faster-to-solve systems (24)
for testing L

C
p -dominance; as long as �̃ < |PO|� 1, this con-

dition is only su�cient for pruning, but not necessary; after
each round, we double �̃ (line 8); ii) we sortedly enumer-
ate candidate L

C
p -dominated tuples from PO in reverse order

(line 6), as the worst tuples wrt. the ordering are the most
likely to be L

C
p -dominated; iii) using linear system (24), we

check the existence of a convex combination of the first �̃
tuples in PO (line 7), as they are the best wrt. the ordering
and thus more likely to L

C
p -dominate other tuples. After this

early pruning, in the last round (enabled by line 5) all the
remaining tuples are checked against a convex combination
of all the other remaining tuples, which is now a necessary
and su�cient condition for pruning, as in Theorem 11.

5.3.2 Evaluation metrics and results
We assess e�ciency of the di↵erent algorithms for comput-

ing nd-Sky by measuring, in a number of di↵erent scenarios,
i) execution time (as measured on a machine sporting a 2.2
GHz Intel Core i7 with 16 GB of RAM), ii) number of dom-
inance tests, iii) number of F-dominance tests. For com-
puting po-Sky, we only report the execution time. In our

9

Effectiveness wrt Skyk (NBA dataset)

Ciaccia, Martinenghi74

constraints: (1-e)/d ≤ wi ≤ (1+e)/d

Default values:

k = 10

N = 100K

d = 4

e = 20%

NBA dataset (190,862 points)

