POLITECNICO DI MILANO

DIPARTIMENTO DI
ELETTRONICA,
INFORMAZIONE

E BIOINGEGNERIA

Flexible Score Aggregation

Davide Martinenghi
Bolzano, November 12, 2018

Outline

Finding interesting objects in a dataset
* Multi-objective optimization

Historical perspective
 Rank aggregation
» Classical approaches and their limitations

Combining opaque rankings
* Median ranking with MedRank

Ranking queries
« Fagin’s Algorithm and Threshold Algorithm

Skyline queries
* Block-Nested-Loop and Sort-Filter-Skyline Algorithms

Restricted skylines
* Reconciling Ranking Queries and Skyline Queries
* Reconciling Fagin’s Algorithm and Threshold Algorithm

Finding interesting objects

in @ dataset

Multi-objective optimization

= Simultaneous optimization of different criteria
e E.g., different attributes of objects in a dataset

= Main scenarios:

e Combination of user preferences expressed by multi-
criteria queries

— Example: ranking restaurants by combining criteria about
culinary preference, driving distance, stars, ...
e Meta-search
— For a given query, combine the results from different
search engines
e Nearest neighbor problem (e.g., similarity search)

- Given a database D of n points in some metric space,
and a query g in the same space, find the point (or
the k points) in D closest to g

Multi-objective optimization

= Simultaneous optimization of different criteria
e E.g., different attributes of objects in a dataset

= Main approaches:

e Ranking queries
— Top k objects according to a given scoring function

e Skyline queries
— Set of non-dominated objects

e Lexicographic queries
— strict priority among different attributes

— even the smallest difference in the most important
attribute can never be compensated by the other attributes

Historical perspective

Rank aggregation: the original problem

) _ [Borda, 1770][Marquis de Condorcet, 1785]
= Rank aggregation is the problem of combining several ranked

lists of objects in a robust way to produce a single consensus
ranking of the objects

Rank aggregation: the original problem

) _ [Borda, 1770][Marquis de Condorcet, 1785]
= Rank aggregation is the problem of combining several ranked

lists of objects in a robust way to produce a single consensus
ranking of the objects

« Old problem (social choice theory) with lots of open challenges
 Given: n candidates, m voters

Candidate Candidate Candidate Candidate Candidate
A B D E C

B D B A E

C E E C A

D A C D B

E C A B D
Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

= What is the overall ranking according to all the Voters?
* No visible score assigned to candidates, only ranking

= Who is the best candidate? (point of view of the buyer)

Borda’s and Condorcet’s proposals

= Borda's proposal
» Election by order of merit
— First place - 1 point
— Second place = 2 points

— n-th place = n points

« Candidate’s score: sum of points
= Borda winner: lowest scoring candidate

= Condorcet winner:

» A candidate who defeats every other candidate in pairwise
majority rule election

Borda winner <> Condorcet winner
1 |2 |3 (4 [5 |6 |7 [8 [9 [10
A A A A A A C C Cc ¢
cC C € € € C B B B B
B B B B B B A A A A

= Borda scores:
« A:1x6+3x4 =18
« B:3x6+2x4 =26
o (C:2x6+1x4 = 16 < Borda winner

= Condorcet’s criterion:
* A beats both B and C in pairwise majority
e A is Condorcet’s winner

Condorcet’s paradox

C B A
B A C
A C B

= Condorcet’s winner may not exist
» Cyclic preferences

Main approaches to rank aggregation
[Arrow, 1950]

= Axiomatic approach
— Desiderata of aggregation formulated as “axioms”

— By the classical result of Arrow, a small set of natural
requirements cannot be simultaneously achieved by any
nontrivial aggregation function

— Arrow’s paradox: no rank-order electoral system can be
designed that always satisfies these three "fairness" criteria:

— No dictatorship (nobody determines, alone, the group’s preference)
— If all prefer X to Y, then the group prefers Xto Y

— If, for all voters, the preference between X and Y is unchanged, then
the group preference between X and Y is unchanged

Main approaches to rank aggregation

Metric approach

— Finding a new ranking R whose total distance to the initial
rankings R, ..., R, is minimized

Several ways to define a distance between rankings

— Kendall tau distance K(R;, R,), defined as the number of
exchanges in a bubble sort to convert R; to R,

— Spearman’s footrule distance F(R;, R,), which adds u
the distance between the ranks 01f the same item in the
two rankings

Finding an exact solution is
— NP-hard with Kendall tau
— PTIME with Spearman’s footrule
— ltis known that
K(Ri, Rz2) = F(Ry, R2) = 2 K(Ry, R2)
— F(R;, R,) admits efficient approximations (e.g., median ranking)

Combining opaque rankings

Combining opaque rankings

. .] [_Fagin, Kuvar, Sivakumar, SIGMOD 200?]
= Techniques using only the position of the elements in

the ranking (no other associated score)

= We review MedRank, proposed by Fagin et al.

— Based on the notion of median, it provides a(n
approximation of) Footrule-optimal aggregation

Input: m rankings of n elements

Output: the top k elements according to median ranking

1. Use sorted accesses in each ranking, one element at a
time, until there are k elements that occur in more than

m/2 rankings

2. These are the top k elements

= MedRank is instance-optimal
— Among the algorithms that access the rankings in sorted
order, this is the best possible algorithm (to within a
constant factor) on every input instance

An aside: instance optimality

= A form of optimality aimed at when standard
optimality is unachievable

= Formally:
= Let A be a family of algorithms
= Let I be a set of problem instances
= Let c be a cost metric applied to an algorithm-instance
pair
= Algorithm A* is instance-optimal wrt. A and I for the

cost metric c if there exist constants k; and k5 such that,
for all AeA and I€l,

c(A*, I) < k;-c(A, I) + ks

MedRank example: hotels in Paris

Top 3 hotels

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

MedRank example: hotels in Paris

Ibis Crillon Le Roch

Top 3 hotels

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

MedRank example: hotels in Paris

Ibis Crillon Le Roch

Etap Novotel Lodge In :
Top 3 hotels

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

MedRank example: hotels in Paris

A

Ibis Crillon Le Roch
Etap Novotel Lodge In :
. Top 3 hotels
Novotel Sheraton Ritz _
¥ Novotel median{2,3,?}=3
= Strategy:

e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

MedRank example: hotels in Paris

A

Ibis Crillon Le Roch
Etap Novotel Lodge In :
. Top 3 hotels
Novotel Sheraton Ritz _
_ _ ¥ Novotel median{2,3,?}=3
Mercure Hilton Lutetia
= Strategy:

e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

MedRank example: hotels in Paris

A

A
Ibis Crillon Le Roch
Etap Novotel Lodge In :
. Top 3 hotels
Novotel Sheraton Ritz _
, _ ¥ | Novotel median{2,3,5}=3
Mercure Hilton Lutetia . _
_ . Hilton median{4,5,7}=5
Hilton Ibis Novotel i, _ _
Ibis median{1,5,?}=5
When the median ranks are all
distinct (unlike here), we have the
Footrule-optimal aggregation
= Strategy:

e Make one sorted access at a time in each ranking
e Look for hotels that appear in at least 2 rankings

NB: price, rating and distance are opaque, only the
position matters

Ranking queries

Ranking queries with a scoring function

Several studies consider rankings where the objects,
besides the position, also include a score (usually in
the [0, 1] interval)

Traditionally, two ways of accessing data:

e Sorted (sequential) access: access, one by one, the next
element (together with its score) in a ranked list,
starting from top

e Random access: given an element, retrieve its score
(position in the ranked list or other associated value)

Main interest in the top k elements of the aggregation
e Need for algorithms that quickly obtain the top results
e ... without having to read each ranking in its entirety

Several algorithms developed in the literature to
minimize the accesses when determining the top k

elements
e Main works by Fagin et al.

Ranking queries

= Objects are ranked by using a scoring function
e Weights may express relative importance of attributes
e The problem reduces to single-objective optimization
e Typically the function is monotone

= Algorithmic focus is on different kinds of access to
data and optimality wrt. number of accesses

1.0

[O (O score=distance+2xprice

080
score=distance+2*price r ‘Q O

0.6r

price
N
O

~ ~
~ SO~

~ SO
- ~ ~

’ ~
' ~ SO~
~ NS
L ’ ~ SO
. SO SIS
’ ~
L e ~

0. T R R \T\q LN
8.0 0.2 0.4 0.6 0.8 1.0
distance

Fagin’s Algorithm (FA, also known as A0)
[Eagin, PODS 1998]
Input: a monotone query combining rankings R, ..., R,

Output: the top k <object, score> pairs

1. Extract the same number of objects by sorted accesses
in each ranking until there are at least k objects in
common

2. For each extracted object, compute its overall score by
making random accesses wherever needed

3. Among these, output the k objects with the best overall
score

= Complexity is sub-linear in the number N of objects
e Proportional to the square root of N when combining two
rankings
e The stopping criterion is independent of the scoring
function

e Not instance-optimal

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Etap 91 Novotel 9

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Etap 91 Novotel 9
Novotel .85 Sheraton 8

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Etap 91 Novotel 9
Novotel .85 Sheraton 8
Mercure .85 Hilton 7

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Etap 91 Novotel 9
Novotel .85 Sheraton 8
Mercure .85 Hilton 7
Hilton .825 Ibis 7

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Look for hotels that appear in both rankings

Example cont’d: hotels in Paris

Hotels Cheapness Hotels Rating

Ibis 92 Crillon 9 t

Etap 91 Novotel 9 Top2 |Score
Novotel .85 Sheraton 8 Novotel .875
Mercure .85 Hilton 7 Crillon .825
Hilton .825 Ibis 7

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Now complete the score with

Threshold Algorithm (TA)
[Fagin, Lotem, Naor, PODS 2001]
Input: a monotone query combining rankings R, ..., R,
Output: the top k <object, score> pairs
1. Do a sorted access in parallel in each ranking R;
2. For each object 0, do random accesses in the other
rankings R;, thus extracting score s;
3. Compute overall score f(s, ..., S,). If the value is among
the k highest seen so far, remember o
4. Lets,;;be the last score seen under sorted access for R,
5. Define threshold T=f(s;4, ..., S;,)
6. If the score of the k-th object is worse than T, go to step 1
/. Return the current top-k objects
= TA is instance-optimal among all algorithms that use

ran

= The authors of TA received the Godel prize in 2014 for

the

dom and sorted accesses (FA is not)

The stopping criterion depends on the scoring function

design of innovative algorithms

Example cont’d: hotels in Paris with TA

Hotels Cheapness Hotels Rating

Top2 | Score _

Threshold
value: T = ??

point: t =(??,?77)

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

Example cont’d: hotels in Paris with TA

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Top2 | Score _
Crillon 825
Ibis .81
Threshold

value: T = .91
point: t =(.92,.9)

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Then make a for each new hotel

Example cont’d: hotels in Paris with TA

Hotels Cheapness Hotels Rating
Ibis .92 Crillon 9
Etap 91 Novotel .9 Top2 |Score |
Novotel .875
Crillon 825
Threshold
value: T =.905

point: T =(.91,.9)

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:
e Make one sorted access at a time in each ranking
e Then make a for each new hotel

Example cont’d: hotels in Paris with TA

Hotels Cheapness Hotels Rating
Ibis 92 Crillon 9 t
Etap 91 Novotel .9 Top2 [Score
Novotel .85 Sheraton 8 . Novotel .875
Crillon .825
Threshold
value: T = .825

point: T =(.85,.8)

= Query: hotels with best price and rating
e Scoring function: 0.5*cheapness+0.5*rating

= Strategy:

e Stop when the score of the k-th hotel is no worse than
the threshold

Ranking queries — main aspects

Effective in identifying the best objects
« Wrt. a specific scoring function

Excellent control of the cardinality of the result
* kis an input parameter of a top-k query

For a user, it is difficult to specify a scoring function
« E.g., the weights of a weighted sum

Computation is very efficient
- E.g., Nlog k for local, unordered datasets of N elements
« Many different results for different settings

Easy to express the relative importance of attributes

Skyline queries

Skylines

Find good objects according to several different perspectives

* e.g., attribute values Aq,..., A,
« Based on the notion of dominance

Tuple t dominates tuple s, indicated f < s, iff
o Vi.1</<d — t[A;] < s[A/] (t is nowhere worse than s)
e 3Jj. 1<j<d A t[A] < s[A]] (and better at least once)

The skyline of a relation is the set of its1 gon—dominated tuples

of the dataset (hence the name)

price

0.6
0.4+~

0.2-

In 2D, the shape resembles the contour O ©

0.8

non—slééline

O

skyline

0

02 04 06 08 10
distance

Skylines — Block Nested Loop (BNL)

[Borzsonyi et al., ICDE 2001]

Input: a dataset D of multi-dimensional points
Output: the skyline of D
1. LetW=0@

2. forevery pointpin D

3 if p not dominated by any pointin W

4, remove from W the points dominated by p
3 add p to W

6. return W

= Computation is O(n?) where n=|D|

= Very inefficient for large datasets

Skylines — Sort-Filter-Skyline (SFS)

[Chomicki et al., ICDE 2003

]

Input: a dataset D of multi-dimensional points
Output: the skyline of D

1.

2
3.
4.
S)
6

Let S = D sorted by a monotone function of D’s attributes
let W=0
for every pointpin S
if p not dominated by any pointin W
add p to W
return W

Pre-sorting pays off for large datasets, thus SFS performs
much better than BNL

Example cont’d: hotels in Paris with SFS

_ M Dataset

Ibis .08 3
Novotel | .15 A
Hilton 75 3
Crillon 25 A
Sheraton | .2 2

e (low values are good)

Example cont’d: hotels in Paris with SFS

Novotel | .15 A
Crillon 25 A
Ibis .08 3
Sheraton | .2 2
Hilton 75 3

e E.g., by Cost + Reviews

Example cont’d: hotels in Paris with SFS

Novotel 115 ! e Add if not dominated by
any point in the window

Novotel | .15 1 = Window

Example cont’d: hotels in Paris with SFS

_ e Add if not dominated by
rliem 2 oL any point in the window

Novotel | .15 1 = Window

Example cont’d: hotels in Paris with SFS

e Add if not dominated by
any point in the window

Ibis .08 3

Novotel | .15 1 = Window
Ibis 08 3

Example cont’d: hotels in Paris with SFS

e Add if not dominated by
any point in the window

Sheraton | .2 2

Novotel | .15 1 = Window
Ibis 08 3

Example cont’d: hotels in Paris with SFS

e Add if not dominated by
any point in the window

Hilton 75 .3

Novotel | .15 1 = Window
Ibis 08 3

Example cont’d: hotels in Paris with SFS

e Add if not dominated by
any point in the window

Novotel | .15 A = This is the skyline
Ibis .08 3

Skylines — main aspects

Effective in identifying potentially interesting objects if nothing
iIs known about the preferences of a user

Very simple to use (no parameters needed!)
Too many objects returned for large, anti-correlated datasets

Computation is essentially quadratic in the size of the dataset
(and thus not so efficient)

Agnostic wrt. known user preferences (e.g., price is more
important than distance)

Extension: k-skyband = set of tuples dominated by < k tuples
 Every top-k result set is contained in the k-skyband

Comparing different approaches

Example: skyline/k-skyband query
1.0_—
0.8:

0.6-

price

04-

0.2-

080 02 04 06 08 10
_ distance No top-2 or top-3 query
O skyline

will return a oint
@® @ 2-skyband = 3-skyband Op

Example: ranking query

1.0

0.8
osr @O

) ~
®) o~
~So ~
- — NS Se
[SO~
SO
T SN <
~ SO ~
~ SN0~
~ SOS ~
~ ~ SOS ~
. ~ SOS ~
~ SO~ Se
SO~
- ~ SO~ ~
~ ~ ~
~ ~ ~
N ~
N ~ ~ Mo
~ ~
¢ ~ SOS S
N DR
L ¢ ~ SOS ~
~o SaSa Se
’ ~ DUNEN ~
- s ~ DN
. ~ DN
¢ ~ DN
~ DN
L ? ~ ~ON
~o S |
4 S o
4 SO~
¢ SO~
~ DS
L s ~ DN
~ DN
" ~ ~
~ ~
L L | L L

0_ A T T I S S S N ST S S :
8.0 0.2 0.4 0.6 0.8 1.
distance

Example: another ranking query

1.0

0.8 ' L

06- \ A

price
O
O

\ “ \ \
0.4 ‘

I

-

-
-
-

0.2

y\ \
0.8 —’_ L _L_l_l_ \ I\ I -

.0 0.2 0.4

L . a1) .

0.6 0.8
distance

1.0

@ 4 first distance then price

| - L 1 L

Example: lexicographic query favoring price

1.0

0.8

0.6

0.4

distance

Comparing different approaches

Ranking queries | Lexicographic Skyline queries
approach

Simplicity

Overall view of No No Yes
interesting results

Control of Yes Yes No
cardinality

Trade-off among Yes No No
attributes

Relative Yes Yes No

importance of
attributes

Restricted skylines

Restricted skylines

. _ [Ciacci? and Martiner_lghi, VLDB 2017]
= A reconciliation between skyline and ranking queries

« Take into account different importance of different attributes
— no strict priority as in the lexicographic approach

= Extreme cases:
« Skyline queries: dominance across all monotone functions M
« Ranking queries: one single scoring function feM

» |dea: consider a family of scoring functions F € M to
characterize the interesting objects
— may be specified by means of constraints on the weights

F-dominance:
* Tuple t F-dominates tuple s#t, denoted by t <¢ s, iff

vieF. f(t)<f(s), with at least one strict inequality

» When F=M then < = <

ND and PO

= Skyline as non-dominated tuples:
SKY(r)={tcr|fscr. s=<t}

= Non-Dominated Skyline (ND), given F:
ND(r; F)={tcr|Psecr. s<rt}

= Skyline as tuples optimal wrt a monotone scoring function:
SKY(r)={ter|3df e M. Vser. s#t— f(t) < f(s)}

= Potentially Optimal Skyline (PO), given F:
PO(r; F)={ter |dfeF. Vser. s#£t— f(t)<f(s)}
= Extreme cases:

« F=M > ND=PO=Sky
« F={f} > ND=PO=top-1 query wrt. scoring function f

ND and PO

» k-Skyband as non-dominated tuples:
« Tuples dominated by less than k tuples

= Non-Dominated k-Skyband (ND,), given F:
 Tuples F-dominated by less than k tuples

= k-Skyband as tuples optimal wrt a monotone scoring function:
» Tuples that are top k for some monotone scoring function

= Potentially Optimal k-Skyband (PO,), given F:
« Tuples that are top k for some monotone scoring function in F

= Extreme cases:
® F=M > NDk=POk=Skyk
« F={f} > ND,=PO,=top-k query wrt. scoring function f

Restricted skylines — example

40}]

wW
o

—_
o
— T

@ SkyWwp
@ np\PO

~0- o

mileage x 1000
N
o

o 10 20
pricex1000

F = {wPPrice -+ wMMileage ‘ wp > ’wM}W

(cars)

Sky = {C1, C2, C4, C6, C7}
e C2<C3andC4 < C5

ND = {C1, C2, C4}
« (C4 <C6and C4 <-C7

PO = {C1, C4}

No allowed combination of
weights makes C2 the top car

K |

0.8

0.6

0.2}

Allowed weights:
convex polytope in the weight space

_— |

F-dominance regions

» The F-dominance region of ¢
» set of all points F-dominated by ¢

= Example: F = {quadratic functions with w; + w, = w3}

« tis notin the F-dominance region of ¢

— and thus not F-dominated by it Allowed weights:

convex polytope in the weight space

Checking F-dominance

Common scoring functions are linear in the weights:

f(p)=) wigi(pli)

For these functions and linear constraints on the weights,
checking p < g can be done in two ways:

1. by solving a linear program, or

2. by verifying if g is in the F-dominance region of p

The second approach is faster, but requires computing the
vertices of a convex polytope in the weight space
« But this has to be done just once for a query

Let WV be the j-th vertex of the polytope. Then:

p=<eq it Sw gl < 3w gl
| \ J-th "vertex score" of p

Computing ND, in multi-source scenarios
_] _ [Ciaccia ?nd Martinenghi, CIKM 2018]
= In a centralized setting, ND, is essentially computed as

Sky, by replacing dominance with F-dominance

= In a distributed (multi-source) setting, we reconcile
the FA and TA algorithms through F-dominance:

Flexible Score Aggregation (FSA)

« Do a sorted access and corresponding random accesses for
tuple t
« Keep tif less than k objects F-dominate ¢
i.e., t belongs to the current ND,(r;F) set

« Stop when t <¢ T holds for k objects (t is the threshold point)

= FSA is instance-optimal for any family F
« When F = {f} it reduces to TA
* When F= M it reduces to FA

Wrap-up

Wrap-up
= All approaches to multi-criteria queries have pros and cons

» Reconciling ranking queries and skylines offers improvements:
Control over the importance of attributes

Much better control over the cardinality of the result
Easier specification of functions than top-k queries
Efficiency often better than skylines (but not top-k queries)

= But there is much more. For instance:

« Cases of uncertainty in the ranking (what to do when scores or
weights are not a precise value but an interval?)

* Ranking heterogeneous objects across different sources (rank
join problem)

* Including notions such as proximity and diversification of objects
in the ranking

« Ranking queries from the point of view of the seller: which
weights make my candidates win (reverse top-k)?

Main References

Historical papers

. Jean-Charles de Borda
Mémoire sur les élections au scrutin. Histoire de I'Académie Royale des Sciences, Paris 1781

. Nicolas de Condorcet
Essai sur I'application de I’'analyse a la probabilité des décisions rendues a la pluralité des voix, 1785

= Kenneth J. Arrow
A Difficulty in the Concept of Social Welfare. Journal of Political Economy. 58 (4): 328-346, 1950

Rank aggregation and ranking queries

= Ronald Fagin, Ravi Kumar, D. Sivakumar
Efficient similarity search and classification via rank aggregation. SIGMOD Conference 2003: 301-312

. Ronald Fagin
Fuzzy Queries in Multimedia Database Systems. PODS 1998: 1-10

= Ronald Fagin, Amnon Lotem, Moni Naor
Optimal Aggregation Algorithms for Middleware. PODS 2001

Skylines

. Stephan Borzsonyi, Donald Kossmann, Konrad Stocker
The Skyline Operator. ICDE 2001: 421-430

. Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang
Skyline with Presorting. ICDE 2003: 717-719

Main References

Extensions of skylines: restricted skylines, k-skybands

Paolo Ciaccia, Davide Martinenghi
Reconciling Skyline and Ranking Queries. PVLDB 10(11): 1454-1465 (2017)

Paolo Ciaccia, Davide Martinenghi
FA + TA < FSA: Flexible Score Aggregation. CIKM 2018: 57-66

Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger
Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1): 41-82 (2005)

Rank join

Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid
Supporting Top-k Join Queries in Relational Databases. VLDB 2003: 754-765

Karl Schnaitter, Neoklis Polyzotis
Evaluating rank joins with optimal cost. PODS 2008: 43-52

Extensions of ranking queries: uncertainty, proximity, diversity, reverse top-k

Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, Marco Tagliasacchi
Ranking with uncertain scoring functions: semantics and sensitivity measures. SIGMOD Conference 2011:
805-816

Davide Martinenghi, Marco Tagliasacchi
Proximity Rank Join. PVLDB 3(1): 352-363 (2010)

Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi
Top-k bounded diversification. SIGMOD Conference 2012: 421-432

Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, Kjetil Ngrvag:
Reverse top-k queries. ICDE 2010: 365-376

Extras

Complexity of computing ND and PO

= Algorithmic variants for ND
e unsorted vs. sorted

e Linear Programming vs. Vertex Enumeration
e 1 phase (check <, directly) vs. 2 (first check < then <)

14/2)
= Parameters at most (™)

e c (constraints), d (dimensions), N (tuples), 'q (verticesj

e ve(c) = complexity of vertex enumeration given ¢
constraints (NP-hard)

e Ip(x, y% = complexity of Linear Programming with x
inequalities and y variables

- ND: O(ve(c) + N - (log N + |ND| - q))
- PO: O(|ND| - log |ND| - Ip(g, IND]))

Effectiveness of restricted skylines vs skylines

c o =
o W O

o
~

PO

o
N

o
o

(ND,PO)-SKY/SKY ratio
X
pd
O

1 2 3 4 5
constraints

Effectiveness wrt Sky, (NBA dataset)

NBA dataset (190,862 points)

10°;
4
10 2 104
£' 1000, E 1000 ND
E — 3 e k
£ 100 O
O < NDx S 100} 3¢ SKyy
8 10l * Skyk W
10t . . .
” | o L 2 3 4 6 8
1 2 5 10 20 50 100 dimensions
K
1000} constraints: (1-e)/d = w; = (1+€)/d
500|
= Default values:
©
,_g 100} k=10
S 50}
8 N =100K
10} —~v d=4
none1% 2% 5% 10%20%50% full
€ (spread) £ =20%

